
Paul Phillips
Cendant

Choose (And Optimize)Choose (And Optimize)
The Best Index The Best Index

Copyright, 2006 © Paul D. Phillips

To Promote
Better SQL Writing Skills

And More Efficient Systems
Among Central Florida

Oracle User
Group Members

Presentation SummaryPresentation Summary

This presentation will discuss the many
current index types now available in
Oracle 10g and in addition some of the
less commonly used features

About Paul D. Phillips:About Paul D. Phillips:

Sr. Database Administrator @
Cendant Timeshare Resort Group

Oracle Certified (8, 8i, 9i) DBA

IT Industry Subject Matter Expert
for over 20 years and published
author

Officer of CFOUG since 2002

Types of Indexes as of 10gTypes of Indexes as of 10g

• Clustered

• Bit Map

• Bit Map Join

• Reverse

• Function Based

• Domain

• B-Tree

What is a Clustered Index?What is a Clustered Index?
A A clustercluster is a schema object that contains is a schema object that contains

data from one or more tables data from one or more tables

Data is effectively “preData is effectively “pre--joined”joined”

Commonly used by OLTP systemsCommonly used by OLTP systems

Can do Index Cluster or Hash ClusterCan do Index Cluster or Hash Cluster

Research implies Hash is faster, but has Research implies Hash is faster, but has
restrictionsrestrictions

What is a Bitmap Index?What is a Bitmap Index?
A bitmap for each unique column value is

used instead of a list of rowids

Each bit in the bitmap corresponds to a Each bit in the bitmap corresponds to a
possible rowid possible rowid

If bit is set, then it means that the row with If bit is set, then it means that the row with
the corresponding rowid contains the key the corresponding rowid contains the key
valuevalue

Mapping function converts the bit position Mapping function converts the bit position
to an actual rowid to an actual rowid

Why use a Bitmap Index?Why use a Bitmap Index?

In cases where there is low cardinality of the
column data

Each key value is used instead of a list of rowids

Can also index NULLSCan also index NULLS

Size is orders of magnitude smaller than standard Size is orders of magnitude smaller than standard
BB--TreeTree

In combinations, speed can be blistering fast In combinations, speed can be blistering fast
(BITMAP And)(BITMAP And)

Why use a Bitmap Index Why use a Bitmap Index
(cont.)?(cont.)?

““Minimize Records Per Block” sounds odd Minimize Records Per Block” sounds odd
but works great by eliminating but works great by eliminating
“assumption” of how many rows are in “assumption” of how many rows are in
each blockeach block

Must be applied after table is built but Must be applied after table is built but
before Bitmap Indexes are createdbefore Bitmap Indexes are created

Tests show space saving from 2 Tests show space saving from 2 –– 15 %.15 %.

Downside to the use of Downside to the use of
Bitmap IndexesBitmap Indexes

CONCURRENCY: When many updates need
to occur at the same time

Due to the potential for a large number of Due to the potential for a large number of
blocks to be involved in a single BITMAP blocks to be involved in a single BITMAP
INDEX value (I.E., low cardinality,) a INDEX value (I.E., low cardinality,) a
single update has the potential to lock a single update has the potential to lock a
very large portion of a table.very large portion of a table.

What is a Bitmap Join What is a Bitmap Join
Index?Index?
An index for the join of two or more tables

Much more efficient in storage than materialized
join views

Restrictions: Restrictions:

Update only one table in the join at a timeUpdate only one table in the join at a time

Must be unique or PKMust be unique or PK

No IOTsNo IOTs

OthersOthers

What is a Reverse Index?What is a Reverse Index?

Example: a standard BExample: a standard B--Tree Index would have the Tree Index would have the
following order: 537, 538, 539, 540, 541following order: 537, 538, 539, 540, 541

A reverse index, though also a BA reverse index, though also a B--Tree structure, Tree structure,
would contain: 045, 145, 735, 835, 935would contain: 045, 145, 735, 835, 935

What’s the advantage? For items that are sequential, What’s the advantage? For items that are sequential,
the more even distribution prevents an unbalanced the more even distribution prevents an unbalanced
leaf block structureleaf block structure

Disadvantage? Mainly, can’t do range scans, only Disadvantage? Mainly, can’t do range scans, only
unique key or FFSunique key or FFS

What is a Function Based Index?What is a Function Based Index?

Useful for queries that have a qualified value in the Useful for queries that have a qualified value in the
predicatepredicate

Value is precomputed and stored in the indexValue is precomputed and stored in the index

Classic example:Classic example:
WHERE UPPER(NAME) = ‘SMITH’;WHERE UPPER(NAME) = ‘SMITH’;

Can create more powerful sorts: UPPER, LOWER, Can create more powerful sorts: UPPER, LOWER,
DESC, and NLSSORT functionsDESC, and NLSSORT functions

What is a Function Based Index What is a Function Based Index
(cont.)?(cont.)?

Increase the potential for Optimizer to do RANGE Increase the potential for Optimizer to do RANGE
SCANS: SCANS:
CREATE INDEX idx ON T1 (col_a + col_b); CREATE INDEX idx ON T1 (col_a + col_b);

SELECT * FROM T1 WHERE col_a + col_b < 10;SELECT * FROM T1 WHERE col_a + col_b < 10;

True DESCending order indexes are special case of True DESCending order indexes are special case of
FBIsFBIs

Must have the following initialization parameters defined to Must have the following initialization parameters defined to
create a functioncreate a function--based index:based index:
QUERY_REWRITE_INTEGRITY set to TRUSTED

QUERY_REWRITE_ENABLED set to TRUE

COMPATIBLE set to 8.1.0.0.0 or a greater value

Table must have statisticsTable must have statistics

What is a Domain Index?What is a Domain Index?

The use of an applicationThe use of an application--specific index of type specific index of type
indextypeindextype

An An indeindexxtypetype is an object that specifies the routines is an object that specifies the routines
that manage a domain (applicationthat manage a domain (application--specific) indexspecific) index

Exist in the same namespace as tables, views, and Exist in the same namespace as tables, views, and
other schema objectsother schema objects

Similar to Function Based Indexes, but is more Similar to Function Based Indexes, but is more
extensible; can have many user defined objects extensible; can have many user defined objects
(Functions) to precompute “value of interest”(Functions) to precompute “value of interest”

The Classic: The Classic:
Binary Tree Indexes (BBinary Tree Indexes (B--Trees)Trees)

Branches and Leafs:Branches and Leafs:

Upper Blocks (Branches) point to lowest level (Leaf) blocksUpper Blocks (Branches) point to lowest level (Leaf) blocks

Branches are for searchingBranches are for searching

Leaf blocks contain every indexed, nonLeaf blocks contain every indexed, non--null data value and null data value and
a corresponding rowid a corresponding rowid

Rowid is used to locate the actual rowRowid is used to locate the actual row

All leaf blocks are at the same depth from the root branch All leaf blocks are at the same depth from the root branch
blockblock

Advantages are numerous and well documented Advantages are numerous and well documented

New option in Version 8: New option in Version 8: COMPRESS NCOMPRESS N

IOT: the INDEX ORGANIZED TABLEIOT: the INDEX ORGANIZED TABLE
Introduced in Oracle version 8.

Standard tables are called Organization HEAP: data
is stored as it is entered

New structure, the IOT, is defined as Organization
INDEX: Data is stored in Order

Currently, must have a Primary Key definition

Redundant data storage is eliminated by having
the data in the table also be the data in the
Primary Key and carrying the associated non-PK
data with the PK

IOTs (cont.)IOTs (cont.)
Pros:

Table can be updated without space impact,
unlike Compressed Data Segments

Useful when PK is primary access mode (lookup
tables, etc.)

Cons:

Table will always be in LOGGING mode.

Secondary Indexes are somewhat less than
efficient.

Compressed IOTs: Serendipity

Any nonAny non--unique or unique partitioned index can unique or unique partitioned index can
use the COMPRESS feature.use the COMPRESS feature.

Syntax of this additional clause is quite simple:Syntax of this additional clause is quite simple:
COMPRESS COMPRESS integerinteger

Where Where integer integer can be from 1 to the number of can be from 1 to the number of
columns in a noncolumns in a non--unique index, or 1 to the unique index, or 1 to the
number of columns number of columns -- 1 in a unique index. 1 in a unique index.

Performance Example & Autotrace:

Query is of the form: Query is of the form:

SELECT SUM(d.Col5) SELECT SUM(d.Col5)
FROM Master m, FROM Master m,

Detail dDetail d
WHERE m.Col1 = 'Time1'WHERE m.Col1 = 'Time1'
AND m.Col2 = 'AND m.Col2 = 'AttributeValueAttributeValue''
AND m.Col3 = 'AND m.Col3 = 'CustomerValueCustomerValue''
AND m.Col1 = d.Col1AND m.Col1 = d.Col1
AND m.Col3 = d.Col3AND m.Col3 = d.Col3
AND m.Col4 = d.Col4AND m.Col4 = d.Col4

Compression Reduces PIO and LIO
Autotrace #1: Standard tables with separate primary key indexes.

Execution Plan

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=48 Card=1 Bytes=43)

1 0 SORT (AGGREGATE)

2 1 SORT* (AGGREGATE)

3 2 TABLE ACCESS* (BY INDEX ROWID) OF 'DETAIL' (Cost =3 Card=68 Bytes=1292)

4 3 NESTED LOOPS* (Cost=48 Card=12437 Bytes=534791)

5 4 INDEX* (FAST FULL SCAN) OF 'MASTER_PK' (UNIQUE) (Cost=1 Card=182 Bytes=4368)

6 4 INDEX* (RANGE SCAN) OF 'DETAIL_PK' (UNIQUE) (Cost=2 Card=68)

Statistics

--

0 recursive calls

0 db block gets

8318 consistent gets (BASELINE)
0 physical reads

0 redo size

390 bytes sent via SQL*Net to client

430 bytes received via SQL*Net from client

2 SQL*Net roundtrips to/from client

1 sorts (memory)

0 sorts (disk)

1 d

IOT Reduces PIO and LIO
Autotrace #2: Non Compressed IOTs:

Execution Plan

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=32 Card=1 Bytes =43)

1 0 SORT (AGGREGATE)

2 1 SORT* (AGGREGATE

3 2 NESTED LOOPS* (Cost=32 Card=1961350 Bytes=84338050)

4 3 INDEX* (FAST FULL SCAN) OF 'MASTER_PK' (UNIQUE) (Cost=2 Card=182 Bytes=4368)

5 3 INDEX* (RANGE SCAN) OF 'DETAIL_PK' (UNIQUE) (Cost=2 Card=10800 Bytes=205200)

Statistics

--

0 recursive calls

0 db block gets

3217 consistent gets (39% less I/O or 61% REDUCTION!)
0 physical reads

0 redo size

390 bytes sent via SQL*Net to client

430 bytes received via SQL*Net from client

2 SQL*Net roundtrips to/from client

1 sorts (memory)

0 sorts (disk)

1 rows processed

Compressed IOT Reduces PIO and LIO
Autotrace #3: Compressed IOTs:

Execution Plan

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=26 Card=1 Bytes=41)

1 0 SORT (AGGREGATE)

2 1 SORT* (AGGREGATE

3 2 NESTED LOOPS* (Cost=26 Card=35573 Bytes=1458493)

4 3 INDEX* (FAST FULL SCAN) OF 'MASTER_PK' (UNIQUE) (Cost =2 Card=182 Bytes=4368)

5 3 INDEX* (RANGE SCAN) OF 'DETAIL_PK' (UNIQUE) (Cost=2 Card=196 Bytes=3332)

Statistics

--

0 recursive calls

0 db block gets

2940 consistent gets (35 % less I/O or 65% REDUCTION!)
0 physical reads

0 redo size

390 bytes sent via SQL*Net to client

430 bytes received via SQL*Net from client

2 SQL*Net roundtrips to/from client

1 sorts (memory)

0 sorts (disk)

1 rows processed

Conclusion:
New index structures continue to enhance New index structures continue to enhance

performance and flexibility of the Oracle performance and flexibility of the Oracle
RDBMS. RDBMS.

More choices, more complexity. More choices, more complexity.

DBAs as well as Developers should become DBAs as well as Developers should become
familiar with them to be able to choose familiar with them to be able to choose
the “best practices”the “best practices”

Monthly
4th Thursday
6pm – 8pm

IBM Center
Rocky Point

