
1

Statspack, AWR Tuning & Block Tuning
SOUG – 2007; Tampa, Florida

Rich Niemiec, TUSC
(Thanks: Jay Rossiter, John Kennedy, Julie Wong, Arsalan Farooq, Benoit

Dageville, Tom Kyte, Brad Brown & Joe Trezzo)

2

Audience Knowledge

• Oracle8i Experience ?
• Oracle9i Experience ?
• Oracle9i RAC Experience?
• Oracle10g Experience?

• Goals
– Overview of Tuning Statspack/AWR
– Focus on a few nice features of Oracle 10g

• Non-Goals
– Learn ALL aspects of Tuning Oracle

3

Overview

• Statspack, Tools & Scripts that you can still use
– Top Waits
– Load Profile
– Latch Waits
– Top SQL
– Instance Activity
– File I/O

• The Future OEM & ADDM
• Helpful V$/X$
• Summary

4

Tuning in General

• Both an Art and a Science
• Exceptions often rule the day…Not a “one size fits all”
• Hardware & Architecture must be right for your application

or difficult to succeed.
• Statspack & Enterprise Manager (also 3rd party products)

are best for simple tuning and ongoing maintenance.
• V$/X$ are best for drilling deep into problems

• Enterprise Manager 10g will radically change things.

5

Statspack Statspack -- Still nice; Still nice;
Some new 10g featuresSome new 10g features

6

Statspack – Check Regularly

1. Top 5 wait events
2. Load Profile
3. Instance Efficiency Hit Ratios
4. Wait Events / Wait Event Histograms
5. Latch Waits
6. Top SQL
7. Instance Activity / Time Model Stats / O/S Stats
8. File I/O / File Read Histogram / Undo Stats
9. Memory Allocation
10. Undo

7

Statspack – Miscellaneous notes

• SQL> @spcreate (system/manager as SYSDBA) <1m
• SQL> alter user PERFSTAT account lock; (also unlock)

• SQL> EXECUTE STATSPACK.MODIFY_STATSPACK_PARAMETER –
(i_snap_level=>5, i_buffer_gets_th=>100000, - i_modify_parameter=>'true');

• SQL> execute STATSPACK.SNAP; (do this for start/end) PL/SQL
procedure successfully completed.
(spauto.sql – Setup a snap on the hour every hour)

• SQL> @ORACLE_HOME/rdbms/admin/spreport (also sprepsql)

8

Statspack – Header Information

DB Name DB Id Instance Inst Num Release Cluster Host

------------ ----------- ------------ -------- ----------- -------- ----
ORA92 968233682 P10 1 9.2.0.4.0 NO RJN1

Snap Id Snap Time Sessions Curs/Sess Comment
--------- ------------------ -------- --------- ------------

Begin Snap: 458 28-Nov-03 00:15:00 814 179.1
End Snap: 505 28-Nov-03 23:45:00 816 211.4

Elapsed: 1,410.00 (mins)

Cache Sizes (end)

~~~~~~~~~~~~~~~~~
Buffer Cache:    32,773M      Std Block Size:    8K

Shared Pool Size:     2,048M          Log Buffer:    1,024K



9

Statspack – Header Information

DB Name         DB Id    Instance     Inst Num Release     RAC Host

------------ ----------- ------------ -------- ----------- --- ----------
ORCL          1050469182 orcl                1 10.1.0.2.0  NO  RJNMOBILE5

Snap Id     Snap Time      Sessions Curs/Sess Comment
--------- ------------------ -------- --------- ------------

Begin Snap:         1 12-Apr-04 11:36:02       14       5.4
End Snap:         2 12-Apr-04 12:25:32       18       5.6

Elapsed:               49.50 (mins)

Cache Sizes (end)

~~~~~~~~~~~~~~~~~
Buffer Cache: 24M Std Block Size: 8K

Shared Pool Size: 80M Log Buffer: 256K

10

Statspack – Header Information

• Ensure that you’re running for the right instance.
• Check the start/end times
• Check the cache sizes

– Could have been changed during the run
– Last page will tell you more on starting/ending values

of initialization parameters

11

Statspack – Load Profile

Load Profile
~~~~~~~~~~~~                            Per Second       Per Transaction

--------------- ---------------
Redo size:          1,409,245.79             36,596.21

Logical reads:            157,472.47              4,089.35
Block changes:              4,061.85              105.48
Physical reads:              5,965.05              154.90
Physical writes:                587.76              15.26

User calls:              5,922.08              153.79
Parses:                 92.11              2.39

Hard parses:                  0.17              0.00
Sorts:                 93.88              2.44
Logons:                  0.25              0.01

Executes:              5,686.76              147.68
Transactions:                 38.51

% Blocks changed per Read:    2.58    Recursive Call %:     2.38
Rollback per transaction %:    1.22       Rows per Sort:   114.10



12

AWR – Load Profile



13

Statspack – Instance Efficiency

Instance Efficiency Percentages (Target 100%)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Buffer Nowait %: 99.08 Redo NoWait %: 99.86
Buffer Hit %: 96.39 In-memory Sort %: 99.95
Library Hit %: 100.00 Soft Parse %: 99.82

Execute to Parse %: 98.38 Latch Hit %: 99.64
Parse CPU to Parse Elapsd %: 85.11 % Non-Parse CPU: 99.86

14

Statspack - Instance Efficiency
Things to look for…

• Buffer NoWait % of less than 99 percent. This is
ratio of hits on a request for a specific buffer
where the buffer was immediately available in
memory. If the ratio is low, then could be a (hot)
block(s) being contended for that should be
found in the Buffer Wait Section.

15

Statspack - Instance Efficiency
Things to look for…

• Buffer Hit % of less than 95 percent. This is the ratio of
hits on a request for a specific buffer and the buffer was
in memory instead of needing to do a physical I/O.
– When this varies greatly one day to the next, further

investigation should be done as to the cause.
– If you have unselective indexes that are frequently accessed, it

will drive your hit ratio higher, which can be misleading
indication of good performance.

– When you effectively tune your SQL and have effective indexes
on your entire system, this issue is not encountered as
frequently and the hit ratio is a better performance indicator.

16

Statspack - Instance Efficiency
Things to look for…

• Library Hit % of less than 95 percent. A lower library hit
ratio usually indicates that SQL is being pushed out of
the shared pool early (could be due to a shared pool that
is too small).
– A lower ratio could also indicate that bind variables are not

used or some other issue is causing SQL not to be reused (in
which case a smaller shared pool may only be a band-aid that
will potentially fix a library latch problem which may result).

– You must fix the problem (use bind variables or
CURSOR_SHARING) and then appropriately size the shared
pool. I’ll discuss this further when we get to latch issues.

17

Statspack - Instance Efficiency
Things to look for…

• In-Memory Sort % of less than 95 percent in
OLTP. In an OLTP system, you really don’t want
to do disk sorts. Setting the
PGA_AGGREGATE_TARGET (or
SORT_AREA_SIZE) initialization parameter
effectively will eliminate this problem.

• Latch Hit % of less than 99 percent is usually a
big problem. Finding the specific latch will lead
you to solving this issue. More in the Latch Wait
section.

18

AWR - Instance Efficiency

19

What are you Waiting on?

20

Statspack – Top Wait Events

Top 5 Timed Events
~~~~~~~~~~~~~~~~~~                                              

% Total
Event                              Waits    Time (s) Ela Time
--------------------------- ------------ ----------- --------
db file sequential read      399,394,399   2,562,115    52.26
CPU time                                     960,825    19.60
buffer busy waits            122,302,412     540,757    11.03
PL/SQL lock timer                  4,077     243,056     4.96
log file switch 188,701     187,648     3.83
(checkpoint incomplete)



21

Statspack - Top Wait Events
Things to look for… 

Wait Problem Potential Fix
Sequential Read Indicates many index reads – tune the 

code (especially joins); Faster I/O
Scattered Read Indicates many full table scans – tune 

the code; cache small tables; Faster I/O
Free Buffer Increase the DB_CACHE_SIZE; 

shorten the checkpoint; tune the code to 
get less dirty blocks, faster I/O,
use multiple DBWR’s. 

Buffer Busy Segment Header – Add freelists (if inserts) 
or freelist groups (esp. RAC). Use ASSM.



22

Statspack - Top Wait Events
Things to look for… 

Wait Problem Potential Fix
Buffer Busy Data Block – Separate ‘hot’ data; potentially

use reverse key indexes; fix queries to 
reduce the blocks popularity, use 
smaller blocks, I/O, Increase initrans 
and/or maxtrans (this one’s debatable) 
Reduce records per block.

Buffer Busy Undo Header – Add rollback segments 
or increase size of segment area (auto undo)

Buffer Busy Undo block – Commit more (not too 
much) Larger rollback segments/area. 
Try to fix the SQL.



23

Statspack - Top Wait Events
Things to look for… 

Wait Problem Potential Fix
Enqueue - ST Use LMT’s or pre-allocate large extents 
Enqueue - HW Pre-allocate extents above HW (high 

water mark.)
Enqueue – TX Increase initrans and/or maxtrans (TX4) 

on (transaction) the table or index.  Fix 
locking issues if TX6.  Bitmap (TX4) &
Duplicates in Index (TX4).

Enqueue - TM Index foreign keys; Check application 
(trans. mgmt.) locking of tables.  DML Locks.



24

Transactions Moving through 
Oracle: ITL & Undo Blocks

Why INITRANS Matter!



25

User 1 – Updates Row# 1&2
User 2 updates Row 3

• User1 updates a row with an 
insert/update/delete – an ITL is 
opened and xid tracks it in the 
data block.

• The xid ties to the UNDO 
header block which ties to the 
UNDO data block for undo.

• If user2 wants to query the row, 
they create a clone and rollback 
the transaction going to the undo 
header and undo block.

• If user3 wants to update same 
row (they wait).  If user 3 wants 
to update different row then they 
open a second ITL with an xid
that maps to an undo header that 
maps to an undo block.

Cache Layer

2

Transaction Layer
XID 01

XID 02

2     Row 3

1     Row 1

1     Row 2

Lock Byte

ITL 1

ITL 2

User1
Request

User3
Request

XID 02 ITL 2

Row 32 Row 3



26

Row Level Locks
(C

ha
in

 L
at

ch
)

n

1

3

Cache Buffers

Buffer 
Header

Hash
Buckets

LRU Lists LRU Write List

DB
Write
DB

Write

1

2

3

Lo
g 

B
uf

fe
rsUser

Request

S
ha

re
d 

P
oo

l

SGA

Buffer Cache

2

Cache Layer

2

Transaction Layer
XID 01

XID 02

2     Row 3

1     Row 1

1     Row 2

Lock Byte

ITL 1

ITL 2

XID 01 ITL 1

Itl Xid Uba Flag Lck …
0x01  0x0005.02a.0000028c  0x008000af.026b.01  ---- 1 …

usn#

0x02a     0x028c

RBU Header 5

wrap#

Data Block

slot#

XID
0X005.02a.0000028c

Transaction Identifiers



27

Block Dumps – Top Section / ITL

Itl Xid Uba Flag Lck Scn/Fsc
0x01   0x0004.010.00000fba  0x0080003d.08b5.10  ---- 4  fsc 0x009d.00000000
0x02   0x0004.016.00000fae  0x008000cc.08af.34  C--- 0  scn 0x0000.003deb5b

ITL – 2 Interested 
Transaction Lists

Transaction ID
Undo#.slot#.wrap#
(Undo#,slot#,seq#)

UBA:
File.block(Undo dba).sequence.record
Undo block address where last change 
is recorded.

Rows Locked: 
4 rows deleted 
for this xid in 
this block.



28

AWR – ITL Issues 



29

Statspack - Top Wait Events
Things to look for… 

Wait Problem Potential Fix
Latch Free Investigate the detail (Covered later)
Log Buffer Space Increase the Log Buffer; Faster disks 

for the Redo Logs
Log File Switch Archive destination slow or full; Add 

more or larger Redo Logs
Log file sync Commit more records at a time; Faster 

Redo Log disks; Raw devices



30

Statspack - Top Wait Events
Things to look for… 

Wait Problem Potential Fix
CBC Latches Cache Buffers Chains Latches – Reduce

the length of the hash chain (less 
copies) by reducing block’s popularity.
Increase the latches by increasing 
buffers.  Use Oracle SQ generator.

LRU Chain Latch This latch protects the LRU list when 
a user needs the latch to scan the LRU
chain for a buffer.  When a dirty buffer
is encountered it is linked to the 
LRU-W.  When adding, moving, or
removing a buffer this latch is needed.



31

Decoding the 
Hot/Cold Regions

(fyi only)



32

The percent of buffers in the hot region
A look at pointers in the LRU

Managed as FIFO

_db_percent_hot_default = 50 
The percent of buffers in the hot region

LRU Lists

_db_percent_hot_default = 70 (too high?)
The percent of buffers in the hot region

Managed as LRU/MRULRU Lists



33

A look at pointers in the LRU

Managed as FIFO Managed as LRU/MRU

Block
From Disk

If Touch Count > 2 when Oracle is
looking for free buffer or doing 
DBWR then pointer to MRU (hot). 



34

Altering the Hot/Cold LRU
Really advanced tuning!

1. _db_percent_hot_default (50) – The percent of buffers in the 
hot region. 

2. _db_aging_touch_time* (3) – Seconds that must pass to 
increment touch count again. (Higher - less LRU movement)

3. _db_aging_hot_criteria (2) – Threshold to move a buffer to 
the MRU (hot) end of LRU chain.

4. _db_aging_stay_count (0) – **Touch count reset to this when 
moved to MRU (hot) end. Set=0 even if it was 200 previously!

5. _db_aging_cool_count (1) – Touch count reset to this when 
moved to LRU (cold) end. Set=1 even if it was 200 previously! 

Setting parameter 1 (above) lower, we increase hanging on to older buffers 
and setting it higher will cause a flush sooner. (*Error in description)



35

Altering the Hot/Cold LRU
Really advanced tuning!

6. _db_aging_freeze_cr (FALSE) – Setting this to TRUE will 
make cr (consistent read) buffers too cold to keep in the 
cache.

7. _db_percent_hot_keep (0) – Percent of keep buffers 
considered hot (in hot region).  Old LRU algorithm!

8. _db_percent_hot_recycle (0) – Percent of recycle buffers 
considered hot (in hot region).  Old LRU algorithm!

** If _db_aging_stay_count => _db_aging_hot_criteria then touch 
count is set to ½ it’s current count instead of setting it to the 
_db_aging_stay_count when moved to the hot end of LRU.

- FTS, FFIS (multi-block) are put on the cold end of the LRU.



36

Additional LRU’s / Faster!!

• LRU Main block replacement list
• LRU-W Old dirty buffers and reco/temp
• LRU-P Ping Buffer list / RAC
• LRU-XO Buffers to be written for drop/truncate
• LRU-XR Buffers to be written for reuse range
• Thread CKPT Thread Checkpoint Queue
• File CKPT File Checkpoint Queue
• Reco CKPT Reco Checkpoint
• LRU-MAIN & LRU-AUX help LRU



37

Locally Managed 
Tablespaces- LMT

• Manage space locally using bitmaps
• Benefits

– no tablespace fragmentation issues
– better performance handling on large segments 
– lower contention for central resources, e.g., no ST enqueue 

contention
– fewer recursive calls

• Implementation
– specify “EXTENT MANAGEMENT LOCAL” clause 

during tablespace creation
– in-place migration



38

Automatic Segment Space 
Management (ASSM)

• Automatic intra-object space management
• Benefits –

– Eliminates Rollback Segment Management
– simplified administration (no more FREELISTS, 

FREELIST GROUPS, PCTUSED)
– improved space utilization & concurrency
– enhanced performance

• Can set undo retention time
– If set to longest running query time, no more “Snapshot too 

old”!
• Implementation

– specify “SEGMENT SPACE MANAGEMENT AUTO” 
clause during tablespace creation



39

10g Only – Wait Event Histogram
(Breaks down the wait detail)

Wait Event Histogram  DB/Inst: ORCL/orcl  Snaps: 1-2
-> ordered by event (idle events last)

Event
--------------------------------------------------

0 - 1 ms     1 - 4 ms    4 - 8 ms    8 - 16 ms    16 - 32 ms      32+ ms
------------ ------------ ------------ ------------ ------------ ------------
enq: HW - contention

243           74           73           60           55 197
enq: TX - contention

6            3            0            0            0 61
latch free

657            2            0            0            0 0
latch: In memory undo latch

3            3            1            1            0 0
latch: cache buffers chains

89            7           14           68            1 0
latch: redo allocation

35           56           25            3            0 0



40

10g– Enqueues Spelled Out 

Enqueue activity  DB/Inst: ORCL/orcl  Snaps: 1-2
-> Enqueue stats gathered prior to 10g should not be compared with 10g data

Enqueue Type (Request Reason)
------------------------------------------------------------------------------

Requests    Succ Gets Failed Gets       Waits Wt Time (s)  Av Wt Time(ms)
------------ ------------ ----------- ----------- ------------ --------------
HW-Segment High Water Mark

5,264        5,245          19         552          168  304.96
TX-Transaction

1,330        1,330           0          61           77  1,255.21
CF-Controlfile Transaction

4,400        4,298         102         159           43  271.14
CI-Cross-Instance Call Invocation

460          460           0           4            1  157.75
US-Undo Segment

1,021        1,021           0           7            0  60.14
FB-Format Block

3,655        3,655           0           1            0  60.00
-------------------------------------------------------------



41

Statspack – Top 25

• Tuning the top 25 buffer get and top 25 physical 
get queries has yielded system performance gains 
of anywhere from 5 percent to 5000 percent. 

• The SQL section of the statspack report tells you 
which queries to potentially tune first. 

• The top 10 of your SQL statements should not be 
more than 10 percent of your buffer gets or disk 
reads.



42

Statspack – Top SQL

Buffer Gets    Executions  Gets per Exec  %Total Time(s)  Time 
(s) Hash Value

--------------- ------------ -------------- ------ ------- --------
627,226,570          117    5,360,910.9    4.7 9627.09 10367.04

Module: JDBC Thin Client
SELECT * FROM (select d1.tablespace_name, d1.owner, d1.segment_t
ype, d1.segment_name, d1.header_file, d1.extents, d1.bytes, d1.b
locks, d1.max_extents , d1.next_extent from sys.dba_segments d1
where d1.segment_type != 'CACHE'  and  tablespace_name not in (s
elect distinct tablespace_name from sys.dba_rollback_segs)  orde

409,240,446      175,418        2,332.9    3.1 ####### 59430.83
Module:    ?  @sap10ci (TNS V1-V3)
SELECT "TABNAME" , "VARKEY" , "DATALN" , "VARDATA" FROM "KAPOL"
WHERE "TABNAME" = :A0 AND "VARKEY" LIKE :A1 ORDER BY "TABNAME" ,
"VARKEY"



43

AWR – Top SQL



44

Statspack - Latch Waits

Latch Free – Latches are low-level queueing mechanisms 
(they’re accurately referred to as mutually exclusion 
mechanisms) used to protect shared memory structures 
in the System Global Area (SGA). 

• Latches are like locks on memory that are very quickly 
obtained and released. 

• Latches are used to prevent concurrent access to a shared 
memory structure. 

• If the latch is not available, a latch free miss is recorded. 



45

Statspack - Latch Waits

Latch Free –
• Most latch problems are related to:

– The failure to use bind variables (library cache latch)
– Redo generation issues (redo allocation latch)
– Buffer cache contention issues (cache buffers lru chain) 
– Hot blocks in the buffer cache (cache buffers chains). 

• There are also latch waits related to bugs; check 
MetaLink for bug reports if you suspect this is the case 
(oracle.com/support). 

• When latch miss ratios are greater than 0.5 percent, you 
should investigate the issue. 



46

Statspack - Latch Waits

Latch Activity for DB: ORA9I  Instance: ora9i  Snaps: 1 -2

Pct    Avg    Wait                Pct
Get          Get   Slps   Time    NoWait NoWait

Latch                       Requests      Miss  /Miss    (s)    Requests   Miss
------------------------ -------------- ------ ------ ------ ------------ ------
KCL freelist latch                4,924    0.0                  0
cache buffer handles            968,992    0.0    0.0           0
cache buffers chains        761,708,539    0.0    0.4          21,519,841    0.0
cache buffers lru chain       8,111,269    0.1    0.8          19,834,466    0.1
library cache                67,602,665    2.2    2.0           213,590    0.8
redo allocation              12,446,986    0.2    0.0           0
redo copy                           320    0.0                 10,335,430    0.1
user lock                         1,973    0.3    1.2           0



47

Statspack - Latch Waits

Latch Sleep breakdown for DB: 
-> ordered by misses desc

Get                              Spin &
Latch Name                    Requests         Misses      Sleeps Sleeps 1->4
-------------------------- -------------- ----------- ----------- ------------
library cache                  67,602,665   1,474,032   2,935,368 199143/28003

6/582413/412
440/0

cache buffers chains          761,708,539     192,942      83,559 110054/82239
/628/21/0

redo allocation                12,446,986      25,444       1,135 24310/1133/1
/0/0

cache buffers lru chain         8,111,269       6,285       4,933 1378/4881/26
/0/0

process allocation                    177           7           7 0/7/0/0/0
-------------------------------------------------------------

• Note that 10g only has “Spin & Sleeps 1-3+”



48

Statspack - Latch Waits

Latches that are willing to wait try to acquire a latch.  If none are 
available, it will spin and then request the latch again.  It will 
continue to do this up to the _SPIN_COUNT initialization 
parameter (note that spinning costs CPU).  

• If it can’t get a latch after spinning up to the _SPIN_COUNT, it 
will go to sleep.  It will wake up after one centisecond (one 
hundredth of a second).  It will do this twice. 

• It will then start this process again, spinning up to the 
_SPIN_COUNT and then sleeping for twice as long (two 
centiseconds).  After doing this again it will double again.  So the 
pattern is 1,1,2,2,4,4 etc.  It will do this until it gets the latch

• Every time the latch sleeps, it will creates a latch sleep wait. An 
example of a “willing to wait” latch is a library cache latch.  



49

Statspack - Latch Waits

Some latches are “not willing to wait.” This type of latch does 
not wait for the latch to become available. 

• They immediately time out and retry to obtain the latch. 
• A redo copy latch is an example of a “not willing to wait”

latch. 
• A not willing to wait latch will generate information for the 

immediate_gets and the immediate_misses columns of the 
V$LATCH view and also in the statspack report. 

• The hit ratio for these latches should also approach 99% and 
the misses should never fall below 1 percent misses.



50

Statspack - Latch Waits

• Gets - The number of times a willing to wait request for a 
latch was requested and it was available.

• Misses - The number of times a willing to wait request for 
latch was initially requested but was not available.

• Sleeps - The number of a willing to wait request for a latch 
failed over and over until the spin count was exceeded 
and the process went to sleep. The number of sleeps may 
be higher than the misses. Processes may sleep multiple 
times before obtaining the latch.

• NoWait Misses - The number of times immediate (not 
willing to wait) request for a latch was unsuccessful.



51

Statspack - Latch Waits
Things to look for… 

Latch Problem Potential Fix
Library Cache Use bind variables; adjust the 

shared_pool_size 
Shared Pool Use bind variables; adjust the 

shared_pool_size 
Redo allocation Minimize redo generation and 

avoid unnecessary commits
Redo copy Increase the 

_log_simultaneous_copies 
Row cache objects Increase the Shared Pool



52

Use Bind Variables / Latch Issues

• If you don’t use bind variables in your application code you 
usually end up with latch contention with the shared_pool and 
library cache latches.

• This latch wait time can be reduced by changing just the top 
couple of executed statements that were using literal SQL 
instead of bind variables.

• Oracle 8i Release 2 (8.1.6) has an auto-conversion of literals 
into bind variables… Oracle9i extends this slightly…

CURSOR_SHARING=FORCE  
(Default is EXACT; 8iR2)



53

Cursor Sharing - 8.1.6+

If v$sqlarea looks like this:
select empno from rich778 where empno =451572
select empno from rich778 where empno =451573
select empno from rich778 where empno =451574
select empno from rich778 where empno =451575
select empno from rich778 where empno =451576

Use cursor_sharing=force (sqlarea goes to this):
select empno from rich778 where empno =:SYS_B_0



54

Statspack – Instance Activity 
Terminology… 

Statistic Description
Session Logical Reads All reads cached in memory.  Includes both  

consistent gets and also the db block gets. 
Consistent Gets These are the reads of a block that are in the 

cache.  They are NOT to be confused with 
consistent read (cr) version of a block in the 
buffer cache (usually the current version is read).

Db block gets These are block gotten to be changed.  MUST
be the CURRENT block and not a cr block. 

Db block changes These are the db block gets (above) that 
were actually changed.  

Physical Reads Blocks not read from the cache.  Either from 
disk, disk cache or O/S cache; there are also 
physical reads direct which bypass cache using 
Parallel Query (not in hit ratios). 



55

Statspack – Instance Activity

Statistic                                      Total     per Second  per Trans
--------------------------------- ------------------ -------------- ----------
branch node splits                             7,162            0.1        0.0
consistent gets                       12,931,850,777      152,858.8    3,969.5
current blocks converted for CR               75,709            0.9        0.0
db block changes                         343,632,442        4,061.9      105.5
db block gets                            390,323,754        4,613.8      119.8
hot buffers moved to head of LRU         197,262,394        2,331.7       60.6
leaf node 90-10 splits                        26,429            0.3        0.0
leaf node splits                             840,436            9.9        0.3
logons cumulative                             21,369            0.3        0.0
physical reads                           504,643,275        5,965.1      154.9
physical writes                           49,724,268          587.8       15.3
session logical reads                 13,322,170,917      157,472.5    4,089.4
sorts (disk)                                   4,132            0.1        0.0
sorts (memory)                             7,938,085           93.8        2.4
sorts (rows)                             906,207,041       10,711.7      278.2
table fetch continued row                 25,506,365          301.5        7.8
table scans (long tables)                        111            0.0        0.0
table scans (short tables)                 1,543,085           18.2        0.5



56

Statspack – Time Model Stats

Time Model System Stats  DB/Inst: ORCL/orcl  Snaps: 1-2
-> Total Time in Database calls      5560.5s (or 5560475336us)

Statistic                                       Time (s) % of DB Time
----------------------------------- -------------------- ------------
DB CPU                                             119.1        2.1
DB time                                          5,560.5
Java execution elapsed time                          0.1        .0
PL/SQL compilation elapsed time                      0.4        .0
PL/SQL execution elapsed time                        0.2        .0
background cpu time                                 16.4        .3
background elapsed time                          2,097.6        37.7
connection management call elapsed                   1.2        .0
failed parse elapsed time                            0.2        .0
hard parse (sharing criteria) elaps 0.0           .0
hard parse elapsed time                             13.3        .2
parse time elapsed                                  14.1        .3
sql execute elapsed time                         5,556.3        99.9



57

Statspack – Time Model Stats



58

Statspack – O/S Statistics

OS Statistics  DB/Inst: ORCL/orcl  Snaps: 1-2

Statistic                                  Total         per Second
------------------------- ---------------------- ------------------
AVG_IN_BYTES                          37,371,904             12,583
AVG_OUT_BYTES                          1,179,648                397
IN_BYTES                              37,371,904             12,583
OUT_BYTES                              1,179,648                397
AVG_BUSY_TICKS                            24,326
AVG_IDLE_TICKS                           272,598
AVG_SYS_TICKS                              9,483
AVG_USER_TICKS                            14,843
BUSY_TICKS                                24,326
IDLE_TICKS                               272,598
SYS_TICKS                                  9,483
USER_TICKS                                14,843
NUM_CPUS                                       1

----------------------------------------------------------



59

Statspack – Undo Stats

Undo Segment Stats  DB/Inst: ORCL/orcl  Snaps: 1-2
-> ordered by Time desc

Undo          Num Max Qry Max Tx Snap  OutOf uS/uR/uU/
End Time          Blocks        Trans Len (s)   Concy TooOld Space eS/eR/eU
------------ ----------- ------------ ------- ------- ------ ----- -----------
12-Apr 12:19      31,664          243     818       5      0     0 0/0/0/32/28

0/0
12-Apr 12:09      27,248          357     210       5      0     0 0/0/0/55/57

6/0
12-Apr 11:59      16,403          276     171       5      0     0 0/0/0/28/15

2/0
12-Apr 11:49       3,602          327       0       5      0     0 0/0/0/8/16/

0
12-Apr 11:39         469        2,946       0       4      0     0 0/0/0/0/0/0



60

Statspack – File I/O

Tablespace
------------------------------

Av      Av     Av                    Av        Buffer Av Buf
Reads Reads/s Rd(ms) Blks/Rd       Writes Writes/s      Waits Wt(ms)

-------------- ------- ------ ------- ------------ -------- ---------- ------
PSAPSTABI

14,441,749     171    7.9     1.0      521,275        6  1,234,608    6.2
PSAPVBAPD

13,639,443     161    6.2     1.7       10,057        0  2,672,470    4.2
PSAPEDII

11,992,418     142    5.3     1.0       83,757        1  4,115,714    4.4
PSAPEDID

10,617,042     125    8.1     1.0       64,866        1  3,728,009    6.4
PSAPROLL

998,328      12   13.2     1.0    8,321,252       98    285,060   65.7

• Reads should be below 14ms



61

AWR – File I/O



62

Statspack – File Read Histogram

File Read Histogram Stats  DB/Inst: ORCL/orcl  Snaps: 1-2
->Number of single block reads in each time range
->ordered by Tablespace, File

Tablespace               Filename
------------------------ ---------------------------------------

0 - 4 ms    4 - 8 ms     8 - 16 ms   16 - 32 ms 32+ ms
------------ ------------ ------------ ------------ ------------
USERS                    C:\ORACLE\ORADATA\ORCL\USERS01.DBF

560        2,225        1,452        4,089 8,373

SYSAUX                   C:\ORACLE\ORADATA\ORCL\SYSAUX01.DBF
123           40          242          357 405

SYSTEM                   C:\ORACLE\ORADATA\ORCL\SYSTEM01.DBF
100           51          223          207 367



63

Statspack – Check Regularly

1. Top 5 wait events
2. Load Profile
3. Instance Efficiency Hit Ratios
4. Wait Events / Wait Event Histograms
5. Latch Waits 
6. Top SQL
7. Instance Activity / Time Model Stats / O/S Stats
8. File I/O / File Read Histogram / Undo Stats
9. Memory Allocation
10. Undo



64

Tuning the RAC Cluster Interconnect
Using STATSPACK Reports (FYI Only)

– The STATSPACK report shows statistics ONLY for the node or 
instance on which it was run.

– Run statspack.snap procedure and spreport.sql 
script on each node you want to monitor to compare to other 
instances.

– Single-instance tuning should be performed before attempting to 
tune the processes that communicate via the cluster interconnect.



65

Tuning the RAC Cluster Interconnect
Using STATSPACK Reports (FYI Only)

Top 5 Timed Events

Top 5 Timed Events
~~~~~~~~~~~~~~~~~~                                              % Total
Event Waits Time (s) Ela Time
-- ------------ ----------- --------
global cache cr request 820 154 72.50
CPU time 54 25.34
global cache null to x 478 1 .52
control file sequential read 600 1 .52
control file parallel write 141 1 .28

Exceeds CPU time,
therefore needs
investigation.CPU time (processing

time) should be the
predominant event

• Transfer times excessive from other instances in the cluster to this instance.

• Could be due to network problems or buffer cache sizing issues.

66

Tuning the RAC Cluster Interconnect
Using STATSPACK Reports (FYI Only)

• Network changes were made
• An index was added
• STATSPACK report now looks like this:

Top 5 Timed Events
~~~~~~~~~~~~~~~~~~                                              % Total
Event                                               Waits    Time (s) Ela Time
-------------------------------------------- ------------ ----------- --------
CPU time                                                        99    64.87
global cache null to x                              1,655       28    18.43
enqueue                                                46       8     5.12
global cache busy                                     104       7     4.73
DFS lock handle                                        38       2     1.64

CPU time is now the 
predominant event



RAC Architecture
Shared Data Model

Shared Disk DatabaseShared Disk Database

Shared Memory/Global Area

shared shared 
SQLSQL

log log 
bufferbuffer

. . ..   .   .
Shared Memory/Global Area

shared shared 
SQLSQL

log log 
bufferbuffer

Shared Memory/Global Area

shared shared 
SQLSQL

log log 
bufferbuffer

Shared Memory/Global Area

shared shared 
SQLSQL

log log 
bufferbuffer

GES&GCSGES&GCS GES&GCSGES&GCS GES&GCSGES&GCS GES&GCSGES&GCS



68

Real Applications Clusters - Cache Fusion

1. User1 queries data

2. User2 queries same 
data - via interconnect
with no disc I/O

3. User1 updates a 
row of data and 
commits

4. User2 wants to update 
same block of data –
10g keeps data 
concurrency via
interconnect

UNIX/Win2000 Node2

RAM

Disk Array
User1 User2

inter

connect

RAM

UNIX/Win2000 Node1

10G10G



69

Tuning the RAC Cluster Interconnect
Using STATSPACK Reports (FYI)

– Workload characteristics for this instance:
Cluster Statistics for DB: DB2  Instance: INST1

Global Cache Service - Workload Characteristics
-----------------------------------------------
Ave global cache get time (ms):                            
Ave global cache convert time (ms):                        
Ave build time for CR block (ms):                          
Ave flush time for CR block (ms):                          
Ave send time for CR block (ms):                           
Ave time to process CR block request (ms):                 
Ave receive time for CR block (ms):                       
Ave pin time for current block (ms):                       
Ave flush time for current block (ms):                     
Ave send time for current block (ms):                      
Ave time to process current block request (ms):            
Ave receive time for current block (ms):                   
Global cache hit ratio:                                    
Ratio of current block defers:                             
% of messages sent for buffer gets:                        
% of remote buffer gets:                                   
Ratio of I/O for coherence:                                
Ratio of local vs remote work:                             
Ratio of fusion vs physical writes:                        

8.2
16.5
1.5
6.0
0.9
8.5

18.3
13.7
3.9
0.8

18.4
17.4
2.5
0.2
2.2
1.6
2.9
0.5
0.0

Solved after  network 
and index changes.

3.1
3.2
0.2
0.0
1.0
1.3

17.2
0.2
0.0
0.9
1.1
3.1
1.7
0.0
1.4
1.1
8.7
0.6
0.0



70

Tuning the RAC Cluster Interconnect
Using STATSPACK Reports (FYI Only)

– Global Enqueue Services (GES) control the inter-
instance locks in Oracle 9i RAC.

– The STATSPACK report contains a special section for 
these statistics.

Global Enqueue Service Statistics
---------------------------------

Ave global lock get time (ms):                             0.9
Ave global lock convert time (ms):                         1.3

Ratio of global lock gets vs global lock releases:         1.1



71

Tuning the RAC Cluster Interconnect
Using STATSPACK Reports (FYI Only)

– Guidelines for GES Statistics:
• All times should be < 15ms
• Ratio of global lock gets vs global lock releases should be 

near 1.0
– High values could indicate possible network or 

memory problems
– Could also be caused by application locking issues
– May need to review the enqueue section of 

STATSPACK report for further analysis.

Complete Presentation by Oracle’s Rich Niemiec’s at: 
http://www.oracleracsig.org



72

Tuning the RAC Cluster Interconnect
Using AWR Reports (FYI Only)



73

Tuning the RAC Cluster Interconnect
Using AWR Reports (FYI Only)



74

Host and 
Hardware

The Future…
Enterprise Manager 10g for the Grid

Database

Oracle9iAS

Storage

Network and 
Load Balancer

Applications

Administration
Monitoring

Provisioning
Security

Enterprise
Manager



75

The Future ….
Manage end to end

StorageStorage
PoolPool

Storage VirtualizationStorage Virtualization

ServerServer
PoolPool

Processor VirtualizationProcessor Virtualization
Service FrameworkService Framework

Web ServicesWeb Services

IntranetIntranet InternetInternet

Data ManagementData Management



76

• Aware
– Self-monitoring

• Proactive
– Automatic tasks
– Proactive alerts

• Intelligent
– Self-diagnosing
– Self-tuning

Workload
Repository

Alerts &
Advisories

Automatic
Tasks

Oracle 10g Database
Self-Managing Intelligent Infrastructure



77

Monitor All Targets

Monitor 
Targets… 
are they 
up?

Target 
Alerts



78

Database Performance

Pick
Items for 
the Group

Create a 
Prod DB’s 
Group



79

Database Performance

Alert 
Issues

Major 
Waits



80

Database Performance

Monitor 
Database

We have a 
CPU 
issue!



81

Database Performance

Monitor 
Perform.

We have a 
Concurr. 
issue!



82

Grid Services -
Automatic Workload Management

Top 
Services 

Top 
Modules

•Complete Presentation by Oracle’s Erik Peterson at: 
•http://www.oracleracsig.org



83

10g RAC Enhancements

• GRID Control
– Allows for RAC instance startup, shutdown
– Allows for RAC instance creation
– Allows for resource reallocation based on SLAs
– Allows for automatic provisioning when used with 

RAC, ASM and Linux 



84

App. Server Performance

Memory

CPU

Web 
Cache 
Hits



85

View the Web Application

Page 
Response 
Time 
Detail



86

URL Response Times

Web
Page 
Response 
Time all 
URL’s



87

Middle Tier Performance

Web
Page 
Detail 
Response 
Time all 
URL’s

Splits 
Time  
into 
Parts



88

Host Performance

Side by 
Side 
Compare



89

Drill into 
Top SQL 
for worst 
time 
period

Get Help!

ADDM SQL Tuning Advisor



90

Using SQL Tuning Sets 

Tuning 
Results 
for this 
job

Suggests 
using a 
profile
For this 
SQL



91

O
ra

cl
e9

iA
S

Oracle
Database

O
ra

cl
e9

iA
S

O
ra

cl
e

E-
B

us
 S

ui
te

End Users Apps and 
Mid-Tier Servers

Database Hosts Storage

Availability Monitoring Topology

3rd
Pa

rt
y

A
pp

 S
er

ve
r

Network

Beacon running availability 
transaction

Beacon running availability 
transaction

Chicago
Sales Office

Toronto
Sales Office

Tokyo
Sales Office

Beacon running availability 
transaction

Beacon running availability 
transaction

Headquarters



92

3rd party – Indepth Oracle



93

Investigate Reaction To Changes



94

Identify Solutions



95

Verify Solution



96

Verify Improvements



97

Rank Findings



98

Provide Expert Advice



99

Block Dumps



100

Last Resort - Block Dumps

select file_id, block_id, blocks
from dba_extents
where segment_name = 'EMP'
and owner = 'SCOTT';

FILE_ID   BLOCK_ID     BLOCKS
----------- --------------- ------------

1            50465                  3



101

Last Resort - Block Dumps

ALTER SYSTEM DUMP DATAFILE 5 BLOCK 50465
/

ALTER SYSTEM DUMP DATAFILE 5 BLOCK 50466
/

ALTER SYSTEM DUMP DATAFILE 5 BLOCK 50467
/

Or…

ALTER SYSTEM DUMP DATAFILE 5 BLOCK MIN 
50465 BLOCK MAX 50467; 

(Puts output in user_dump_dest)



102

Block Dump:
Data Section



103

Last Resort - Block Dumps

select * 
from emp
where ename = 'MILLER';

EMPNO ENAME   JOB       MGR  HIREDATE  SAL COMM DEPTNO
---------- -------------- ------------ --------- ------------------- -------- ----------- --------------

7934    MILLER   CLERK   7782 23-JAN-82       1300                       10



104

Block Dumps – output from udump

tab 0, row 13, @0x1b0b
tl: 39 fb: --H-FL-- lb: 0x0  cc: 8
col 0: [ 3]  c2 50 23
col 1: [ 6]  4d 49 4c 4c 45 52
col 2: [ 5]  43 4c 45 52 4b
col 3: [ 3]  c2 4e 53
col 4: [ 7]  77 b6 01 17 01 01 01
col 5: [ 2]  c2 0e
col 6: *NULL*
col 7: [ 2]  c1 0b…



105

Block Dumps – Data Section

DUMP OUTPUT - EMPNO:
col 0: [ 3]  c2 50 23

Hex to Decimal: Col0 = EMPNO = 7934
50 (Hex) =  80 (Decimal) – 1 = 79
23 (Hex) = 35 (Decimal) – 1  = 34
c2: Number in the thousands (c2 is exponent)



106

Block Dumps – Data Section

DUMP OUTPUT - ENAME:
col 1: [ 6]  4d 49 4c 4c 45 52

Hex to Character: Col1 = ENAME = MILLER
4d (Hex) =  M (Character)
49 (Hex) =  I (Character)
4c (Hex) =  L (Character)
4c (Hex) =  L (Character)
45 (Hex) =  E (Character)
52 (Hex) =  R (Character)



107

Transactions Moving through 
Oracle: ITL & Undo Blocks



(C
ha

in
 L

at
ch

)

n

1

2

3

Buffer HeadersBuffer Headers

Buffer 
Header

Hash
Buckets

Working with Hash Buckets
And Buffer Headers (not buffers)

• Users asks for a specific data 
block address.
• This is hashed with a 
hashing algorithm and placed 
in the hash bucket that it 
hashes to.
• It walks the hash chain using 
the cache buffers chain latch 
to find the block that it needs 
(curr or cr).
• There can be many versions 
of each block



109

_DB_BLOCK_HASH_BUCKETS
and hashing data block addresses

Example: _DB_BLOCK_HASH_BUCKETS
(shouldn’t have to change this in Oracle9i or 10g)

• Buffer hash table (x$bh) has all buffer headers for all db_block buffers.
• Buffer header ties to memory base address of the buffer.
• Buckets usually set to Prime(2*db_block_buffers)
• A prime number is often used to avoid hashing anomalies
• Objects dba (class) is hashed to a hash bucket on the hash chain
• Get enough hash buckets (_db_block_hash_buckets)
• Blocks assigned to a hash bucket and onto the hash chain
• Could have multiple blocks hashed to same chain (if both hot-issues)
• Can have multiple versions of a block on same chain
• When block is replaced (based on LRU chain) new block comes in and 

could be (probably will be) hashed to a different hash chain.



110

Query all buffer headers (state):

col status for a6
select  state,
decode(state, 0, 'FREE', /* not currently is use */

1, 'XCUR', /* held exclusive by this instance */
2, 'SCUR', /* held shared by this instance */
3, 'CR', /* only valid for consistent read */
4, 'READ', /* is being read from disk */
5, 'MREC', /* in media recovery mode */
6, 'IREC‘, /* in instance(crash) recovery mode */
7, ‘WRITE’, /* being written */
8, ‘PIN’) status, count(*) /* pinned */              

from  x$bh
group by state;

STATE  STATUS COUNT(*)
------------ ------------- -----------------

1  XCUR              2001
3  CR                         3



111

EMP1 is Block#: 56650
(all rows are in this block)

select rowid,empno,
dbms_rowid.rowid_relative_fno(rowid) fileno,
dbms_rowid.rowid_block_number(rowid) blockno,
dbms_rowid.rowid_row_number(rowid)   rowno, rownum,
rpad(to_char(dbms_rowid.rowid_block_number(rowid), 'FM0xxxxxxx') || '.' ||

to_char(dbms_rowid.rowid_row_number (rowid), 'FM0xxx'    ) || '.' ||
to_char(dbms_rowid.rowid_relative_fno(rowid), 'FM0xxx'    ), 18) myrid

from   emp1;
ROWID                   EMPNO     FILENO    BLOCKNO      ROWNO  ROWNUM
------------------ ---------- ---------- ---------- ---------- ----------
MYRID
------------------
AAAM4cAABAAAN1KAAA       7369          1      56650          0  1
0000dd4a.0000.0001

AAAM4cAABAAAN1KAAB       7499          1      56650          1  2
0000dd4a.0001.0001
…
…
AAAM4cAABAAAN1KAAN       7934          1      56650         13  14
0000dd4a.000d.0001

14 rows selected.



112

Let’s watch the EMP1 buffer header
(So far it’s clean and only 1 copy)

select lrba_seq, state, dbarfil, dbablk, tch, flag, hscn_bas,cr_scn_bas,
decode(bitand(flag,1), 0, 'N', 'Y') dirty, /* Dirty bit */
decode(bitand(flag,16), 0, 'N', 'Y') temp, /* temporary bit */
decode(bitand(flag,1536), 0, 'N', 'Y') ping, /* ping (to shared or null) bit */
decode(bitand(flag,16384), 0, 'N', 'Y') stale, /* stale bit */
decode(bitand(flag,65536), 0, 'N', 'Y') direct, /* direct access bit */
decode(bitand(flag,1048576), 0, 'N', 'Y') new /* new bit */

from x$bh
where dbablk = 56650
order by dbablk;

LRBA_SEQ      STATE    DBARFIL     DBABLK        TCH       FLAG HSCN_BAS
---------- ---------- ---------- ---------- ---------- ---------- ----------
CR_SCN_BAS D T P S D N
---------- - - - - - -

0          1          1      56650          0   35659776 4294967295
0 N N N N N N



Lo
g 

B
uf

fe
rs

(C
ha

in
 L

at
ch

)

n

1

2

3
S

ha
re

d 
P

oo
l

SGASGA

Cache BuffersCache Buffers
Buffer Cache

Buffer 
Header

Hash
Buckets

Only ONE block 
on the Hash 
Chain!



114

Let’s watch the EMP1 buffer header
(Delete a row)

delete from emp1
where comm = 0;

one row deleted.



115

Let’s watch the EMP1 buffer header
(Make some changes 2 copies)

select lrba_seq, state, dbarfil, dbablk, tch, flag, hscn_bas,cr_scn_bas,
decode(bitand(flag,1), 0, 'N', 'Y') dirty, /* Dirty bit */
decode(bitand(flag,16), 0, 'N', 'Y') temp, /* temporary bit */
decode(bitand(flag,1536), 0, 'N', 'Y') ping, /* ping (to shared or null) bit */
decode(bitand(flag,16384), 0, 'N', 'Y') stale, /* stale bit */
decode(bitand(flag,65536), 0, 'N', 'Y') direct, /* direct access bit */
decode(bitand(flag,1048576), 0, 'N', 'Y') new /* new bit */

from x$bh
where dbablk = 56650
order by dbablk;

LRBA_SEQ      STATE    DBARFIL     DBABLK        TCH       FLAG HSCN_BAS
---------- ---------- ---------- ---------- ---------- ---------- ----------
CR_SCN_BAS D T P S D N
---------- - - - - - -

0          1          1      56650          1       8200 4294967295
0 N N N N N N

0          3          1      56650          2     524288          0
4347881 N N N N N N



Lo
g 

B
uf

fe
rs

(C
ha

in
 L

at
ch

)

n

1

2

3
S

ha
re

d 
P

oo
l

SGASGA

Cache BuffersCache Buffers
Buffer Cache

Buffer 
Header

Hash
Buckets

Hash Chain is 
now TWO!  One 
is a CR and the 
other is Current.



117

V$Transaction now has our record
(created when transactions have undo)

SELECT t.addr, t.xidusn USN, t.xidslot SLOT, t.xidsqn SQL, t.status, 

t.used_ublk UBLK, t.used_urec UREC, t.log_io LOG, 

t.phy_io PHY, t.cr_get, t.cr_change CR_CHA

FROM v$transaction t, v$session s 

WHERE t.addr = s.taddr; 

ADDR            USN       SLOT        SQL STATUS                UBLK
-------- ---------- ---------- ---------- ---------------- ----------

UREC        LOG        PHY     CR_GET     CR_CHA
---------- ---------- ---------- ---------- ----------
69E50E5C          5         42        652 ACTIVE                1

1          3          0          3          0

USN is the Undo Segment Number (rollback segment ID)
SLOT is the slot number in the rollback segment’s transaction table. 
SQN (Wrap) is the sequence number for the transaction. 
USN+SLOT+SQN are the three values that uniquely identifies a transaction XID



118

Dump the block

Dump the block
Itl Xid Uba Flag  Lck Scn/Fsc
0x01   0x0005.02a.0000028c  0x008000af.02b6.01  ---- 1  fsc 0x0029.00000000
0x02   0x0004.016.00000fae  0x008000cc.08af.34  C--- 0  scn 0x0000.003deb5b

ITL – 2 Interested 
Transaction Lists

Transaction ID
Undo 5 = 5 (decimal)
Slot 2a = 42 (decimal)
SEQ 28C = 652 

UBA:
File.block.sequence.record
Undo block address where 
last change is recorded.

The row I 
deleted is still 
locked; fsc is 
0x29 = 41 bytes

Committed 
Transaction 



119

Insert in 3 other sessions & drive x$bh 
up to the max of 6 versions of block

LRBA_SEQ      STATE    DBARFIL     DBABLK        TCH       FLAG HSCN_BAS
---------- ---------- ---------- ---------- ---------- ---------- ----------
CR_SCN_BAS D T P S D N
---------- - - - - - -

0          3          1      56650          1     524416          0
4350120 N N N N N N

0          3          1      56650          1     524416          0
4350105 N N N N N N

365          1          1      56650          7   33562633    4350121
0 Y N N N N N

0          3          1      56650          1     524416          0
4350103 N N N N N N

0          3          1      56650          1     524416          0
4350089 N N N N N N

0          3          1      56650          1     524288          0
4350087 N N N N N N



Lo
g 

B
uf

fe
rs

(C
ha

in
 L

at
ch

)

n

1

2

3
S

ha
re

d 
P

oo
l

SGASGA

Cache BuffersCache Buffers
Buffer Cache

Buffer 
Header

Hash
Buckets

Hash Chain is 
now SIX long!  
Five CR and the 
one Current.



121

Why only 6 versions of a Block?

select a.ksppinm, b.ksppstvl, b.ksppstdf, a.ksppdesc
from x$ksppi a, x$ksppcv b
where a.indx = b.indx
and substr(ksppinm,1,1) = '_'
and ksppinm like  '%&1%'
order by ksppinm;

KSPPINM
-------------------------------------------------------------------------------
KSPPSTVL
-------------------------------------------------------------------------------
KSPPSTDF
---------
KSPPDESC
-------------------------------------------------------------------------------
_db_block_max_cr_dba
6
TRUE
Maximum Allowed Number of CR buffers per dba



122

What happens after we roll everything 
back – x$bh Still an LRBA:

LRBA_SEQ      STATE    DBARFIL     DBABLK        TCH       FLAG HSCN_BAS
---------- ---------- ---------- ---------- ---------- ---------- ----------
CR_SCN_BAS D T P S D N
---------- - - - - - -

0          3          1      56650          1     524416          0
4350120 N N N N N N

0          3          1      56650          1     524416          0
4350105 N N N N N N

365          1          1      56650         11   35659777    4350702
0 Y N N N N N

0          3          1      56650          1     524416          0
4350103 N N N N N N

0          3          1      56650          1     524416          0
4350089 N N N N N N

0          3          1      56650          1     524288          0
4350087 N N N N N N

6 rows selected.



123

Let’s check V$TRANSACTION & 
match it up to ITL (no need to dump) 

select xidusn, xidslot, xidsqn, ubafil, ubablk, ubasqn, ubarec
from v$transaction t, v$session s
where t.ses_addr = s.saddr;

XIDUSN    XIDSLOT     XIDSQN     UBAFIL     UBABLK     UBASQN   UBAREC

---------- ---------- ---------- ---------- ---------- ---------- ----------
4         42       4863          2        851       2718          8
5         14        667          2       1458        713         25

4.42.4863 = 4.2a.12ff 2.851.2718.8  = 800353.a9e.8
5.14.667 = 5.e.29b 2.1458.713.25 = 8005b2.2c9.19

Itl                   Xid                                   Uba Flag  Lck        Scn/Fsc

0x02   0x0004.02a.000012ff    0x00800353.0a9e.08  ---- 2       fsc 0x0003.00000000

0x03   0x0005.00e.0000029b   0x008005b2.02c9.19  ---- 14      fsc 0x0000.00000000



124

Row Level Locks
(C

ha
in

 L
at

ch
)

n

1

3

Cache Buffers

Buffer 
Header

Hash
Buckets

LRU Lists LRU Write List

DB
Write
DB

Write

1

2

3

Lo
g 

B
uf

fe
rsUser

Request

S
ha

re
d 

P
oo

l

SGA

Buffer Cache

2

Cache Layer

2

Transaction Layer
XID 01

XID 02

2     Row 3

1     Row 1

1     Row 2

Lock Byte

ITL 1

ITL 2

XID 01 ITL 1

Itl Xid Uba Flag Lck …
0x01  0x0005.02a.0000028c  0x008000af.026b.01  ---- 1 …

usn#

0x02a     0x028c

RBU Header 5

wrap#

Data Block

slot#

XID
0X005.02a.0000028c

Transaction Identifiers



125

Helpful V$/X$ Queries
(FYI Only)



126

V$ Views over the years

Version V$ Views X$ Tables
6 23                 ? (35)               
7 72          126
8.0 132 200
8.1 185 271
9.0 227 352
9.2 259 394

10.1.02 340 (+31%) 543 (+38%)



127

Listing of V$ Views

select   name 
from     v$fixed_table
where    name like 'GV%'
order by name;

NAME
---------------------------------

GV$ACCESS
GV$ACTIVE_INSTANCES
GV$ACTIVE_SESS_POOL_MTH
GV$AQ1
GV$ARCHIVE…



128

Need GV$ - Instance ID

select    inst_id, (1 - (sum(decode(name, 'physical reads',value,0)) /
(sum(decode(name, 'db block gets',value,0)) +
sum(decode(name, 'consistent gets',value,0))))) * 100 “Hit Ratio"

from      v$sysstat;

INST_ID       Hit Ratio
-------------- ------------------

1  90.5817699



129

Need GV$ - Instance ID

select    inst_id, (1 - (sum(decode(name, 'physical reads',value,0)) /
(sum(decode(name, 'db block gets',value,0)) +
sum(decode(name, 'consistent gets',value,0))))) * 100 “Hit Ratio"

from      gv$sysstat
group by inst_id;

INST_ID       Hit Ratio
-------------- ------------------

1  90.5817699
2   96.2034537



130

X$ used to create V$

select   * 
from     v$fixed_view_definition
where    view_name = 'GV$INDEXED_FIXED_COLUMN’;

VIEW_NAME                VIEW_DEFINITION
gv$indexed_fixed_column   select   c.inst_id,   kqftanam,   

kqfcoidx, kqfconam,kqfcoipo
from     X$kqfco c,   X$kqftat
where    t.indx = c.kqfcotab
and      kqfcoidx != 0



131

Listing of X$ Tables

select     name
from       v$fixed_table
where      name like 'X%'
order by   name;

NAME
---------------------------------

X$ACTIVECKPT
X$BH
X$BUFQM
X$CKPTBUF
X$CLASS_STAT…



132

Listing of X$ Indexes
(419 in 10g; 326 in 9i)

select    table_name, index_number, column_name 
from      gv$indexed_fixed_column
order by  table_name, index_number, column_name, 

column_position;

TABLE_NAME     INDEX_NUMBER COLUMN_NAME
------------------------------ ------------------------------ ------------------------------

X$CLASS_STAT                            1   ADDR
X$CLASS_STAT                            2   INDX
X$DUAL                                        1   ADDR
X$DUAL                                       2    INDX …



133

V$ - System Information

SQL> select * from v$version;

BANNER

---------------------------------------------------------------
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 – Prod
PL/SQL Release 10.1.0.2.0 –Production
CORE 10.1.0.2.0        Production
TNS for 32-bit Windows: Version 10.1.0.2.0 – Production
NLSRTL Version 10.1.0.2.0 – Production



134

V$ - System Information

select * 
from   v$option;

PARAMETER                VALUE
----------------------------------- -------------

Partitioning                     TRUE
Objects                           TRUE
Real Application Clusters  FALSE
Advanced Replication        TRUE
Bit-Mapped Indexes          TRUE

…



135

Great V$ - V$SESSION_WAIT
(waiting right now)

select event, sum(decode(wait_time,0,1,0)) “Waiting Now",
sum(decode(wait_time,0,0,1)) “Previous Waits", 
count(*) “Total”

from v$session_wait
group by event
order by count(*);

WAIT_TIME = 0 means that it’s waiting
WAIT_TIME > 0 means that it previously waited this many ms 



136

Great V$ - V$SESSION_WAIT 

EVENT      Waiting Now Previous Waits      Total
--------------------------- ------------------- --------------------- ------------
db file sequential read 0           1 1
db file scattered read 2 0          2
latch free 0                    1 1
enqueue 2 0 2
SQL*Net message from client 0 254       480             
…



137

V$SESSION_WAIT
Finding Current Specific waits

Buffer Busy Waits or Write Complete Waits Events:  
SELECT /*+ ordered */ sid, event, owner, segment_name, 

segment_type,p1,p2,p3
FROM v$session_wait sw, dba_extents de
WHERE de.file_id = sw.p1
AND sw.p2 between de.block_id 

and de.block_id+de.blocks – 1
AND (event = 'buffer busy waits' 

OR event = 'write complete waits')
AND p1 IS NOT null
ORDER BY event,sid;



138

V$EVENT_NAME 
Finding P1, P2, P3

col name for a20
col p1 for a10 
col p2 for a10
col p3 for a10
select event#,name,parameter1 p1,parameter2 p2,parameter3 p3
from v$event_name
where name in ('buffer busy waits', 'write complete waits')
EVENT# NAME                      P1         P2         P3

------------- -------------------- ---------- ---------- ----------
143 write complete waits  file#      block#
145 buffer busy waits       file#      block#   id



139

V$ - V$SESSION_WAIT_HISTORY
(Last 10 waits for session)

Buffer Busy Waits or Write Complete Waits Events:  
SELECT /*+ ordered */ sid, event, owner, segment_name, 

segment_type,p1,p2,p3
FROM v$session_wait_history sw, dba_extents de
WHERE de.file_id = sw.p1
AND sw.p2 between de.block_id 

and de.block_id+de.blocks – 1
AND (event = 'buffer busy waits' 

OR event = 'write complete waits')
AND p1 IS NOT null
ORDER BY event,sid;



140

Great V$ - V$SESSION_EVENT
(waiting since the session started)

select sid, event, total_waits, 
time_waited, event_id

from v$session_event
where time_waited > 0
order by time_waited;

SID EVENT                          TOTAL_WAITS TIME_WAITED  
---------- ------------------------------ ----------- -----------

159 process startup                          2           1  
167 latch: redo allocation                   4           1  
168 log buffer space                         2           3  
166 control file single write                5           4

…



141

V$ - V$SESSION_WAIT_CLASS
(session waits by WAIT CLASS)

select wait_class, total_waits
from v$system_wait_class;
SID   WAIT_CLASS              TOTAL_WAITS    
------- -------------------------------------------- ------

--------------
147 Idle                            6582    
150 Idle                             138    
153 Application 10    
153 Administrative                     1    
153 Idle                              47    
153 Network 48    
153 User I/O    4    
153 System I/O   33    



142

Great V$ - V$SYSTEM_EVENT
(waits since the instance started)

EVENT                          TOTAL_WAITS TIME_WAITED
------------------------------ ----------- -----------
latch: session allocation             5644           1
latch: redo allocation                   4           1
latch: cache buffers chains              4           3
enq: TX - index contention               1           3
direct path write temp                  57           6
row cache lock                           1           7  …

select sid, event, total_waits, 
time_waited, event_id

from v$system_event
where time_waited > 0
order by time_waited;



143

V$ - V$SYSTEM_WAIT_CLASS
(system waits by WAIT CLASS)

select wait_class, total_waits
from v$system_wait_class;
WAIT_CLASS              TOTAL_WAITS    
-------------------------------------------- --------------

------
Other                                                           545472    
Application                                                     105    
Configuration                                                   92    
Administrative                                                  1    
Concurrency                                                     30    
Commit                                                          793    
Idle                                                            186169    
Network                                                         385    
User I/O                                                        16017    
System I/O 25478



144

Great V$ - V$OPEN_CURSOR
(Added sql_id in 10g)

select sid, count(*) select sid, sql_id, count(*) 
from v$open_cursor from v$open_cursor
group by sid group by sid, sql_id
having count(*) > 300 order by count(*);
order by count(*) desc;

SID   COUNT(*) SID   COUNT(*) SQL_ID
----------- ---------------- ----------- ---------------- ----------------------

11             450 11                2  9tdqgnq7gd5cf
8              320 11 1   a1xgtxssv5rrp
9              301 11  1   attwbvtyu8x5c



145

V$ - Top 10 as % of All

select sum(pct_bufgets) percent 
from (select rank() over ( order by buffer_gets desc )    as rank_bufgets,

to_char(100 * ratio_to_report(buffer_gets) over (), '999.99') 
pct_bufgets

from   v$sqlarea )
where  rank_bufgets < 11;

PERCENT
------------

97.07



146

Great V$ - V$SQLAREA or V$SQL

User1:
SQL> conn system/manager
SQL> create table emp as select * from scott.emp;
SQL> lock table emp in exclusive mode;

User 2:
SQL> conn system/manager
SQL> lock table emp in exclusive mode;

User 3:
SQL> connect scott/tiger
SQL> lock table emp in 



147

Great V$ - V$SQLAREA or V$SQL

select sql_text, users_executing, executions, users_opening
from v$sqlarea
where sql_text like 'lock table emp%‘;

SQL_TEXT USERS_EXEC   EXEC    USERS_OPEN

------------------------------------------ ----------------- ----------- ----------------
lock table emp in exclusive mode                 1            2 3



148

Great V$ - V$SQLAREA or V$SQL

select sql_text, users_executing, executions, users_opening
from v$sql
where sql_text like 'lock table emp%‘;

SQL_TEXT USERS_EXEC   EXEC    USERS_OPEN

------------------------------------------ ----------------- ---------- -----------------
lock table emp in exclusive mode                 1           1  2
lock table emp in exclusive mode                 0           1  1



149

V$ - What Users are doing…

select a.sid, a.username, s.sql_text
from  v$session a, v$sqltext s
where a.sql_address = s.address
and   a.sql_hash_value = s.hash_value
order by a.username, a.sid, s.piece;

SID  USERNAME         SQL_TEXT
------ ------------------- ------------------------------------

11  PLSQL_USER   update s_employee set salary = 10000
9  SYS                     select a.sid, a.username, s.sql_text 
9  SYS                     from v$session a, v$sqltext
9  SYS                     where a.sql_address  = s.address 

(…partial output listing)



150

Great V$ - V$SEGMENT_STATISTICS

select object_name, statistic_name, value
from v$segment_statistics
where value > 100000
order by value;

OBJECT_NAME STATISTIC_NAME VALUE
---------------------------- ------------------------------------- ---------------
ORDERS space allocated 96551
ORDERS space allocated 134181
ORDERS logical reads 140976
ORDER_LINES db block changes 183600



151

AWR – Segments by 
Buffer Busy Waits



152

AWR – Segments by Logical Reads



153

X$ - % of Current Redo Filled

SELECT ROUND((cpodr_bno/lesiz),2)*100||'%' 
PctCurLogFull

FROM X$kcccp a, X$kccle b
WHERE a.cpodr_seq = b.leseq;

PCTCURLOGFULL
-----------------------------------------
97%



154

X$ - % of Current Redo Filled

alter system switch logfile;
System altered.

SELECT ROUND((cpodr_bno/lesiz),2)*100||'%' 
PctCurLogFull

FROM X$kcccp a, X$kccle b
WHERE a.cpodr_seq = b.leseq;

PCTCURLOGFULL
-----------------------------------------
0%



155

V$ - V$FILE_HISTOGRAM

select * from v$file_histogram;
FILE# SINGLEBLKRDTIM_MILLI SINGLEBLKRDS               

---------- -------------------- ------------
1                    1          900               
1                    2          120               
1                    4          131               
1                    8          359               
1                   16         1072               
1                   32         1752               

…
2                    1            3               
2                    2            1               
2                    4            2               
2                    8           17               



156

Grid Control – 10gR2; 
Run the AWR Report



157

If Time Permits… the Future!



158

64-Bit advancement of
Directly addressable memory

Address Direct Indirect/Extended
• 4 Bit: 16 (640)
• 8 Bit: 256 (65,536)        
• 16 Bit: 65,536 (1,048,576)
• 32 Bit: 4,294,967,296 
• 64 Bit: 18,446,744,073,709,551,616   

• When the hardware physically implements the theoretical 
possibilities of 64-Bit, things will dramatically change…. 
…moving from 32 bit to 64 bit will be like moving from 4 bit 
to 32 bit or like moving from 1971 to 2000 overnight. 



You could stack documents from the 
Earth so high they would pass Pluto!

Stack single 
sheets (2K worth 
of text on each) 
about 4.8B miles 
high to get 16E!!

64bit allows Directly Addressing 
16 Exabytes of Memory



BrainBrain ComputerComputer
Individual maintains 
a ~250M capacity

Stores/processes 
~ 2G in a lifetime

With over 6.5 Billion 
people in the world, 
total memory of 
world is 1.5P, total 
processed is         
13 Exabytes

Laptops ~256M in 
memory capacity

Stores/processes 
40G in its lifetime, 
then buy new one

1.5+ Petabytes 
can be accessed 
and managed by 
one computer with 
today’s technology 
(internet is 8P)

Human Brain vs. Computer



BrainBrain ComputerComputer
10T-1P of 
operations per 
second based on 
retina/neuron 
synapse speed 
(Moravec).

Based on Brain 
power  in Watts 
consumption, the 
brain performs 100T 
– 100P operations 
per second.

Fastest computer 
is IBM at           
70.2 Teraflops 
(Blue / Gene L)

Computer is about 
equal on the low 
end of the brain 
and could be 1000 
times slower on 
the high end of 
brain estimates.

Human Brain vs. Computer



BrainBrain
ComputerComputer

Problem: We forget a lot 
of what we see and learn.

Solution: Drugs that 
improve memory or 
technology that plugs into 
the brain.

Problem: Information 
overload

Solution: Use the 
computer to aggregate 
things and use the brain 
for final decisions. 

Problem: Data Density 
limits or 
Superparamagnetic effect 
(SPE).

Solution: Electron 
Microscope writing on 
stainless steel in a 
vacuum.

Problem: More memory 
gets farther from the CPU 
& Limits to CPU speed

Solution: Chip multiplexing 
& multi-core CPUs

Human Brain vs. Computer



163

What we covered:

• Statspack, Tools & Scripts that you can still use
– Top Waits
– Load Profile
– Latch Waits
– Top SQL
– Instance Activity
– File I/O

• The Future OEM & ADDM
• Helpful V$/X$
• Summary



164

• www.tusc.com
• Oracle9i Performance 

Tuning Tips & 
Techniques; Richard J. 
Niemiec; Oracle Press 
(May 2003)

• Oracle 10g Tuning 
(Early 2007)

“If you are going through hell, keep going” - Churchill

For More Information



“The strength of the team is each individual 
member…the strength of each member is the 
team.”

--Phil Jackson

The Oracle User Groups are part of your team!



166

References

• Oracle9i Performance Tuning Tips & Techniques, Rich Niemiec
• The Self-managing Database: Automatic Performance Diagnosis;

Karl Dias & Mark Ramacher, Oracle Corporation 
• EM Grid Control 10g; otn.oracle.com, Oracle Corporation
• Oracle Enterprise Manager 10g: Making the Grid a Reality; Jay 

Rossiter, Oracle Corporation
• The Self-Managing Database: Guided Application and SQL Tuning;

Benoit Dageville, Oracle Corporation
• The New Enterprise Manager: End to End Performance Management 

of Oracle; Julie Wong & Arsalan Farooq, Oracle Corporation
• Enterprise Manager : Scalable Oracle Management; John Kennedy, 

Oracle Corporation



167

References

• Oracle Database 10g Performance Overview; Hervé Lejeune, Oracle 
Corporation

• Oracle 10g; Penny Avril,, Oracle Corporation
• Forrester Reports, Inc., TechStrategy Research, April 2002, Organic 

IT
• Internals of Real Application Cluster, Madhu Tumma, Credit 

Suisse First Boston
• Oracle9i RAC; Real Application Clusters Configuration and 

Internals, Mike Ault & Madhu Tumma
• Oracle Tuning Presentation, Oracle Corporation



168

References

• www.tusc.com, www.oracle.com, www.ixora.com, 
www.laoug.org, www.ioug.org, technet.oracle.com

• Oracle PL/SQL Tips and Techniques, Joseph P. Trezzo; Oracle 
Press

• Oracle9i Web Development, Bradley D. Brown; Oracle Press
• Special thanks to Steve Adams, Mike Ault, Brad Brown, Don 

Burleson, Kevin Gilpin, Herve Lejeune, Randy Swanson and Joe 
Trezzo.

• Landauer 1986. T.K. Landauer; “How much do people remember? 
Some estimates of the quantity of information in long-term memory,” 
Cognitive Science ,10 (4) pp. 477-493.

• Ralph Merkle, Energy limits to the computational power of the human 
brain



169

References

• Oracle Database 10g Automated Features , Mike Ault, 
TUSC

• Oracle Database 10g New Features, Mike Ault, Daniel 
Liu, Madhu Tumma, Rampant Technical Press, 2003, 
www.rampant.cc

• Oracle Database 10g - The World's First Self-Managing, 
Grid-Ready Database Arrives, Kelli Wiseth, Oracle 
Technology Network, 2003, otn.oracle.com



170

References

• Oracle 10g; Penny Avril, Principal Database Product 
Manager, Server Technologies, Oracle Corporation

• To Infinity and Beyond, Brad Brown, TUSC
• Forrester Reports, Inc., TechStrategy Research, April 

2002, Organic IT
• Internals of Real Application Cluster, Madhu Tumma, Credit 

Suisse First Boston
• Oracle9i RAC; Real Application Clusters Configuration and 

Internals, Mike Ault & Madhu Tumma
• Oracle9i Performance Tuning Tips & Techniques, Richard J. 

Niemiec



171

References

• Oracle 10g documentation
• Oracle 9i RAC class & instructor’s comments
• Oracle 9i Concepts manual
• http://geocities.com/pulliamrick/
• Tips for Tuning Oracle9i RAC on Linux, Kurt Engeleiter, 

Van Okamura, Oracle
• Leveraging Oracle9i RAC on Intel-based servers to build an 

“Adaptive Architecture, Stephen White, Cap Gemini Ernst 
& Young, Dr Don Mowbray, Oracle, Werner Schueler, 
Intel



172

References

• Running YOUR Applications on Real Application Clusters 
(RAC); RAC Deployment Best Practices, Kirk McGowan, 
Oracle Corporation

• The Present, The Future but not Science Fiction; Real Application 
Clusters Development, Angelo Pruscino, Oracle

• Building the Adaptive Enterprise; Adaptive Architecture and 
Oracle, Malcolm Carnegie, Cap Gemini Ernst & Young

• Internals of Real Application Cluster, Madhu Tumma, Credit 
Suisse First Boston 

• Creating Business Prosperity in a Challenging Environment, Jeff 
Henley



173

References

• Real Application Clusters, Real Customers Real Results, Erik 
Peterson, Technical Manager, RAC, Oracle Corp.

• Deploying a Highly Manageable Oracle9i Real Applications 
Database, Bill Kehoe, Oracle

• Getting the most out of your database, Andy Mendelsohn, 
SVP Server Technologies, Oracle Corporation 

• Oracle9iAS Clusters: Solutions for Scalability and Availability,
Chet Fryjoff, Product Manager, Oracle Corporation

• Oracle RAC and Linux in the real enterprise, Mark Clark, 
Director, Merrill Lynch Europe PLC, Global Database 
Technologies



174

TUSC Services

• Oracle Technical Solutions
– Full-Life Cycle Development Projects
– Enterprise Architecture
– Database Services

• Oracle Application Solutions
– Oracle Applications Implementations/Upgrades 
– Oracle Applications Tuning

• Managed Services
– 24x7x365 Remote Monitoring & Management
– Functional & Technical Support

• Training & Mentoring
• Oracle Authorized Reseller



175

Copyright Information

• Neither TUSC nor the author guarantee this document to 
be error-free.  Please provide comments/questions to 
rich@tusc.com.

• TUSC © 2007.  This document cannot be reproduced 
without expressed written consent from an officer of 
TUSC, but the DOUG may reproduce or copy this for 
conference use.

Contact Information
Rich Niemiec: rich@tusc.com

www.tusc.com


