Slide 1

. Who am |?

— Lewis Cunningham
— lewisc@rocketmail.com

Lewis R Cunningham
Author/Blogger/ Database Expert

An Expert's Guide to Oracle
http:/ /blogs.ittoolbox.com/ oracle/guide

lewisc@rocketmail.com

641-715-3900 X26803
Author, EnterpriseDB: The
Definitive Reference Oracle ACE &




. What are we talking about?

SQL Trace

DBMS SESSION

DBMS APPLICATION_INFO
DBMS MONITOR
TRCSESS

TKPROF

ORASIp

. Putting it All Together
. Tips

. Hotsos ILO

Slide 2



Slide 3

We profile code to see how often a certain piece
of code executes and how long that piece of
code takes to execute.

Profiling can tell you where your bottlenecks are
In a process or it can tell you where a well
performing piece of code is getting executed
1,000,000 times an hour.

Profiling code helps debug issues as well as
proactively gathering performance statistics.



Slide 4

Oracle provides several tools to assist in profiling
your code.

We will cover the most common features today.
We will not cover DBMS PROFILER.

DBMS_ PROFILER only gives you basic timing
Information and is not query-able during a
running process.



I Slide 5

. The Oracle database is highly instrumented.
- Oracle has included the ability to print out
I detailed processing information
— Trace is primarily for DML but with the right
assistance, it can be used to profile PL/SQL

— Information gathered:

. Parse, execute, and fetch counts

. CPU and elapsed times

. Physical reads and logical reads

. Number of rows processed

. Misses on the library cache

. Username under which each parse occurred

. Each commit and rollback

. Wait event data for each SQL statement, and a
summary for each trace file



Slide 6

. Some database parameters should be set to

make the most of SQL Trace

- TIMED_STATISTICS: This enables and
disables the collection of timed statistics, such
as CPU and elapsed times, by the SQL Trace
facility, as well as the collection of various
statistics in the dynamic performance tables.

- MAX_DUMP_FILE SIZE: When the SQL Trace
facility is enabled at the instance level, every
call to the server produces a text line in a file in
the operating system'’s file format.

- USER DUMP_DEST: This must fully specify the
destination for the trace file according to the
conventions of the operating system.



I Slide 7

I DBMS SESSION

DBMS_SESSION has many useful utilities but
I the one we are interested in for profiling is:

SET_INDENTIFIER

- Set a user or session name

— Set to application user if possible

— Can be set via logon trigger, JDBC or OCI
- 64 bytes of case-sensitive, free form text

DBMS_ SESSION.SET _IDENTIFIER (‘Lewis');



I Slide 8

I DBMS_APPLICATION_INFO

DBMS_APPLICATION_INFO provides several
I procedures that are useful for profiling:

SET MODULE

- Set a module name

— Module is similar to business activity

- MODULE_NAME is 48 bytes of free form text

- Can be NULL

- Can also set an optional ACTION_NAME at the
same time



I Slide 9

I DBMS APPLICATION INFO

DBMS_APPLICATION_INFO provides several
I procedures that are useful for profiling:

SET _ACTION

— An action within a module

— Actions are the individual steps within a
procedure

— Every line in the procedure does NOT need to
be an action, but can be

- ACTION_NAME is 32 bytes of free form text

- Can be NULL



I Slide 10

I DBMS APPLICATION INFO

BEGIN
DBMS APPLICATION INFO.set module (
module name=>'HR Add a bunch of loops'
actlon name=>'Begin') ;

DBMS APPLICATION INFO.set action (
actlon name=>"'Loop 1000000 times');

—— Loop 1000000 times
FOR 1 IN 1..1000000

LOOP
v _num variable := v num variable + 1;

END LOOP;
END;



Slide 11

DBMS_MONITOR

DBMS_ MONITOR offers several procedures
to assist with profile and statistics gathering.
While there are several useful procedures, |
will concentrate on just two.

CLIENT ID STAT ENABLE

— Gathers statistics for job monitoring
— Dynamic performance stats

DBMS_MONITOR.
client_id=>client_id_stat_enable( 'Lewis');



DBMS_MONITOR

CLIENT ID STAT ENABLE

select * from v$client_stats
>PERR® Gum ¢

0.0147516 seconds

|Erter SQL Statement:

=

select * from viclient stats

B I

.[E} Resutts (&l seript Output | TExplain | TP Autotrace @0EMS Output | @) 0WiA Output |

|Results:

1 Lewis
2 Lewis
3 Lewis
4 Lewvis
9 Lewis
6 Lewis
7 Lewis
g Lewis
9 Lewis
10 Lewvis
11 Lewis
12 Lewis

13 Lewis

14 Lewis

cLen..|l sTatio

B sTAT NMamE
2882015696 user calls
3649052374 DB time
27452582437 DB CPU

E38879E64 parse count (total)
1431595225 parse time elapsed
2453370665 execute count

2821698154 =gl execute elapsedti...

55052502 opened cursors cumu...

3143187968 session logical reads
2263124246 physical reads
1190465109 physical writes
1236385760 redo size
582481098 user commits

3211650785 workarea executions ...

g waLue |
A

1199

1189

0

0

2

1109

0O O 0 o 0o o o

Slide 12



I Slide 13

I DBMS_MONITOR

— Turns tracing on

- Equivalent of
. alter session set events 10046 trace name context
forever, level 8' (or 12, depending)

- Tracing puts performance and diagnostic
iInformation in a text file

I CLIENT ID TRACE ENABLE

DBMS MONITOR.
DBMS_MONITOR.client_id_trace enable(
client_id=> 'Lewis’,
waits=>TRUE,
binds=>TRUE);



Slide 14

DBMS_MONITOR

CLIENT ID TRACE ENABLE
Sample Trace File

EXEC #3:c=15625,e=9140,p=0,cr=1, cu=5,mis=0, r=1,dep=1,00=4, tim=21133870381
Wk J007-08-20 13:17:23.353

¥¥% CLIENT ID: (Lewis) 2007-08-20 13:17:23.353
AIT #4: nam='reliable message' ela= 237 channel context=864782644 channe

w¥& ACTION NAME: (Loop 1000000 times) 2007-08-20 13:17:28.540

*##%% MODULE NAME: (HR Add a bunch of loops) 2007-08-20 13:17:28..540

AIT #4: nam='PL/SQL lock timer' ela= 4999398 duration=500 p2=0 p3=0 obj#
waw 2007-08=-2013:17:34.837

¥#¥% ACTION NAME: (Loop 10000000 times) 2007-08-20 13:17:34.837

AIT #4: nam='PL/50QL lock timer' ela= 4999348 duration=500 p2=0 p3=0 obi#
kww 2007-08-20 13:17:47.291

wiw ACTION NAME: (Loop 100000000 times) 2007-08-20 13:17:47.2091




Slide 15

trcsess

Combines multiple trace files into a single file

Useful in shared server environment

— Multiple processes can trace the same session
- Each process creates its own trace file

Binds can also be created in a separate file,
even In a dedicated server environment

Example syntax (search for client_id = Lewis
across all trace files in a directory):
trcsess clientid=Lewis



Slide 16

trcsess

trcsess {putput=oq§3ut_file__name] [session=session_id]
[clle_n id=client_lid] [service=service_name] _
action=action_name] [module=module name] [trace files]

where

output specifies the file where the output is generated. If this
op’glor][ is not specified, then standard output is used for the
output.

session consolidates the trace information for the session
specified.

clientid consolidates the trace information given client Id.

service consolidates the trace information for the given
service hame. _ _ _ _

action consolidates the trace information for the given action
name.

module consolidates the trace information for the given
module name.

trace_files is a list of all the trace file names. The wild card
character * can be used to specify the trace file names.



Slide 17

tkprof

Tkprof is the “pretty print” for trace files

Most useful when you have a large trace or
many DML statements

Not particularly useful for PL/SQL debugging

Can use tkprof to load trace information into
the database for statistical research

Will generate explain plans for your SQL



Slide 18

tkprof

tkprof filename1 filename?2 [waits=yes|no]
'sort=option] [print=n] [aggregate=yes|no]
insert=filename3] [sys=yes|no]

table=schema.table] [explain=user/password]
record=filename4] [width=n]

Short format: tkprof filename1 filename2
[waits=yes|no] [aggregate=yes|no]

Example: tkprof second ora 712.trc trace_out.txt
waits=yes aggregate=no



TKPROF: Release 10.2.0.1.0 - Production on Tue Aug 21 10:13:44 2007

Copyright (c) 1982, 2005, Oracle. All rights reserved.

Trace file: second ora_ 712.trc
Sort options: default

S R R W R W W W R W e W W W W e W W W B W W W W M W R W W W N W W W N R M W W M M W W R N R R W R OW W W W R OW W RO W W

count = number of times OCI procedure was executed
cpu cpu time in seconds executing
elapsed elapsed time in seconds executing

query number of buffers gotten for consistent read
current number of buffers gotten in current mode (usually for update)

disk = number of physical reads of buffers from disk
rows = number of rows processed by the fetch or execute call

*%% SESSICON ID: (141.561) 2007-08-20 13:16:15.180

T W W W W W W R W W R e W W W W W S W W W N N W e N W W R W W R W R W R W O W R O W W W W R W W R W W W O W O W W

delete from wri$ aggregation enabled

where
trace type = :1 AND primary id = :2 AND gqualifier idl IS5 NULL AND
gualifier id2 IS5 NULL AND instance name IS5 NULL

call count cpu elapsed disk query current Trows
Parse 1 0.00 .00 o o} v} o]
Execute 1 0.00 0.00 0 1 5 1
Fetch 0 0.00 .00 o 0 o} o]
total 2 0.00 0.00 ] 1 5 2 |

Misses in library cache during parse: 0O




Session Summary

Instance Name: second
Oracle Version: 10.2.0.1.0
Session ID: 141.561

Total SQL Statements: 2 (0 user statements, 2 internal statements)

Total Transactions: 0 (0 rollback(s), 0 read-only)

Report Shortcuts

Session Flat Profile

Top 5 Statements per Event

Session Call Graph

Events Histograms

Session Flat Profile
unaccounted-for time 58.8% 5,970.3082s |
PL/SQL lock timer 1.2% 74.9940s 15 4.899965 4.9992s3| 4.99%8%8s
EXEC call.s [CPU] 0.0% 0.0%633 12 0.0039s 0 00008 0.01563
rel:.a.ble message 0.0% 0 00235 4 £ b K § B 00025| D 00023 0 0003s
'PARSE calls [CPU] 0.0% 0.0000s i2{ o oooos' 0.0000s| 0.0000s
Total 100.0% 6,045.3529s
Top 5 Statements per Event
PL/SQL lock timer
644964085 80.0% 59.9947s 12 4.9996s 4.9992s 4.9999s
Cursor #5 20.0% 14.9593s 3 4.9998s3 4.99963 4.9999s

Statements




Slide 21

Putting it all together

Set the DBMS_ SESSION.CLIENT _ID at the beginning
of you session (via logon trigger, OCI or JDBC)

Instrument your code using
DBMS_APPLICATION_INFO

Turn on statistics and tracing using DBMS MONITOR
Use TRCSESS, if required, to consolidate trace files

View the raw trc file or use TKPROF or another parser
to format the output file



Slide 22
Tips

Use the DBMS_APPLICATION INFO procedures
READ MODULE and READ ACTION to save off
previous values at the beginning of your routine

Reset module and action to NULL or to their prior values
at the end of your procedure

Don’t forget to reset the values in your error handlers

You can use DBMS APPLICATION_ INFO
SET_SESSION LONGOPS before a long running query

View long ops values in VESESSION LONGOPS



I Slide 23

I Sample Code

create or replace
I PROCEDURE do _a bunch_of loops
AS
v_old_action VARCHARZ2(32);
v_old _module VARCHARZ2(48);

BEGIN



I Slide 24

I Sample Code

READ MODULE(
module name=>v_old module,
action_name=>v_old_action);

I DBMS_APPLICATION_INFO.

DBMS_APPLICATION_INFO.
set._module(
module name=>
‘HR _Add_a bunch_of loops',
action_name=>'Begin’);



Slide 25

Sample Code

DBMS APPLICATION INFO.
set_action(
action_name=>'Loop 1000000 times');

-- Loop 1000000 times

FOR 1IN 1..1000000 LOOP
V_num_variable :=v_num_variable + 1;

END LOOP;



I Slide 26

I Sample Code

DBMS OUTPUT.PUT_ LINE(
I 'v_num_variable='||
to_char( v_num_variable ) );
DBMS APPLICATION_INFO.
set_module(v_old _module,v_old_action);
END;



I Slide 27

I Call the procedure example

set serveroutput on
BEGIN
DBMS SESSION.SET IDENTIFIER ('Lewis');

DBMS MONITOR.client_id_stat_enable( 'Lewis');
DBMS MONITOR.client_id trace enable(
'Lewis', TRUE, TRUE);

do _a bunch_of loops;

DBMS_MONITOR:.client_id_stat_disable( 'Lewis’);
DBMS_MONITOR.client_id_trace disable( 'Lewis’);
END;



I Slide 28

I Hotsos ILO

- Open Source Instrumentation Library for Oracle

. What does ILO do?

- ILO abstracts the DBMS APPLICATION INFO
and DBMS_SESSION calls into a higher level
library

— Developer's don’'t need to worry about when to
set a trace

. What are the downsides to ILO?

- Requires SYSDBA to install/configure
- Uses internal objects (such as

SYS.Dbms_System.ksdddt;)
— You don’t own the code; it is released as LGPL

I . Whatis ILO?



Slide 29

Hotsos ILO

. Why use it? (from the read me)

. With HOTSOS_ILO, you can track the performance of any
business task on your system, and you can report on
system performance in exactly the language your
management wants to hear: response time for specific
business tasks.

. With HOTSOS_ILO, your Oracle trace files will be proEerIy
time-scoped and won't contain unwanted events like the
'SQL*Net message from client’s events that commonly
plague trace files.

HOTSOS_ILO contains hooks to other Hotsos tools that
allow you to do things like store response time histories and
report on performance trends for specific tasks, and profile
specific tasks or subtasks within large trace files.



Slide 30

Hotsos ILO

Is ILO that different from directly calling the Oracle
procedures?

— Not really. This blurb is from the readme:

All the application developer needs to do is mark the beginnings and
endings of business tasks. For example, imagine that a developer is
writing code that a user will later regard as code that adds an
employee to the HR database. Using HOTSOS_ILO, the developer
will mark the code path as follows:

BEGIN
HOTSOS ILO TASK.BEGIN TASK(
'HR', '"Add employee', ", rec.name);
-- code to add the employee goes here
ENBOTSOS_ILO_TASK.E D TASK;

— That doesn’t look much different, does it?
— ILO does not provide a trace file parser.



Slide 31

Summary

. Instrument your code!

. Instrumentation allows you to proactively look for
performance issues

. Instrumentation allows you to better debug your
applications

. Oracle provides plenty of instrumentation support

. Third parties provide plenty of assistance in
iInstrumenting and parsing the resultant trace files

. It's really not hard once you do it



Slide 32

. Who am |?

— Lewis Cunningham
— lewisc@rocketmail.com

Lewis R Cunningham
Author/Blogger/ Database Expert

An Expert's Guide to Oracle
http:/ /blogs.ittoolbox.com/ oracle/guide

lewisc@rocketmail.com

641-715-3900 X26803
Author, EnterpriseDB: The
Definitive Reference Oracle ACE &




