
Wait-Time Based Oracle
Performance Management

Dallas Deeds
Nationwide

2

Who am I?

 DBA for Nationwide Insurance for 12 years
 Specializing in performance optimization using

Oracle Wait Interface and OS utilities since
2001
 Responsible for performance of 650 Oracle

databases at Nationwide

3

The shop

8 Production DBAs

650 Oracle databases (and growing)
sizes ranging from 1 GB to 6 TB

Primarily on Solaris machines
A sprinkling of HP, AIX, Linux

Primarily frame storage

4

Agenda

 Wait-Based Strategies and Tools
 Case Study One: Hot Block Issue
 Case Study Two: Full Table Scans
 Case Study Three: Inefficient Indexes
 Case Study Four: CBC Latching
 Q&A

5

Working the Right Problems?

 After spending an agonizing week tuning
Oracle to minimize I/O operations,
management typically rewards you with:

• A. An all expense paid vacation
• B. A free lunch
• C. Crumbs from the kitchen
• D. Reward? Nobody even noticed!
• E. You slacker DBA! Don’t you ever do any work?

6

Why Does This Happen?

 Many tools measure system health
 Assumption: If I make the database

healthy, users benefit
 Symptoms

• DBA finds “big” problem and fixes it, users
report no impact

• Lots of data to review and things to fix, not
sure which to do first

• Unclear view of performance leads to
Finger-pointing

Developer or
vendor

It’s your Code!
It’s your

Database!

IT staff

7

Confio Performance Intelligence

 Three Key Principles

1. SQL View: All statistics at SQL statement level

2. Full View: Separately measure every resource
(Oracle wait events) to isolate source of problems

3. Time View: Measure Time, not number of times
a resource is utilized

8

Focus on User Response Time

1. Identify each bottleneck affecting the user
2. Rank bottlenecks by user impact
3. Set correct expectations on impact of fix
4. Implement proven suggestions
5. Show proof the fix helped users

9

SQL View Principle

 Example: ‘CEO’ measuring ‘employee’ output
 Averaging over entire company gives no useful data
 Must measure each job separately
 DBA must manage database similarly
 Measure and identify bottlenecks for each SQL independently

10

Time View Principle

 Example: ‘CEO’ counting ‘tasks’ vs. ‘time to complete’
 Counting system statistics not meaningful
 Must measure Time to complete
 System stats (buffer size, hit ratios, I/O counts) do not identify

where database customers are waiting
 Identify and optimize Wait Time for each SQL to optimize

response time

11

Full View Principle

 Example: ‘CEO’ measuring results with blind spot hiding key
processes

 Without direct visibility, valuable info is lost
 Must have visibility to every process step
 Identify and measure each Oracle resource for each distinct SQL

12

Compliant Performance Tool Types

Two Primary Types of Tools

 Session Specific Tools
• Tools that focus on one session at a time by profiling 10046

trace data obtained by tracing the process
• Examples: Hotsos Profiler, OraSRP Profiler (open source),

tkprof

 Continuous DB Wide Monitoring Tools
• Tools that focus on all sessions by sampling Oracle
• Examples: Confio Ignite, Precise i3

 Both tools have a place in the organization

13

Tracing

 Proper targeting and scoping for required for
best results
• 95 out of 100 users are running well
• 5 out of 100 have spent 99% of time waiting for

locked rows
• If you trace one of the “95” sessions

– No locking problems at all
– May spend time trying to optimize the wrong thing

• If you trace one of the “5” sessions
– Severe locking problems
– Appears that you could fix the locking problems and reduce user

response time by 99%

14

Tracing - Scoping

 Proper scoping of user actions is required to
get the best data
• Stop and start tracing to collect trace data for only

the user actions you are interested in
• Start trace when Bob mashes the ‘enter’ key
• Stop trace when Bob’s results paint on the screen
• Otherwise you will introduce irrelevant data

– SQL*Net messaging
– User actions that are not part of the problem
– Response time gets attributed to the wrong things

15

Tracing (cont)

 Advantages
• Very precise – accurate to the microsecond level

(depending on platform)
• The only way to get certain performance data
• Bind values are available
• Provides detailed analysis even deeper than wait

events

 Disadvantages
• Only works if a known problem is going to occur in

the future or if the problem is repeatable
• Difficult to see trends over time

16

Profiled trace data

17

Trace showing response time skew

 Out of 711,712 I/Os, 11% accounted for 72% of the response time (!)

18

Response time skew

 10046 trace data allows the performance
analyst to illustrate things that are difficult to
see otherwise
 Like showing how many I/Os took between

.034 and .1 seconds
• By datafile
• With minimum, maximum and average times

 This sort of data is handy when arguing with
your disk folks

19

Trace profile example – skewed reads

20

Continuous DB Wide Monitoring Tools

 24/7 sampling provides real-time and
historical perspective
 Allows DBA to go back in time

• User calls, says the batch flow was hung at 3 AM
this morning

 Use built-in utilities - trend reports, graphs,
etc to communicate with other groups
• What things are starting to perform poorly?
• What progress have we made while tuning?
• When did the code change go in that is now

thrashing the system to death?

21

Oracle Wait Events

 Oracle instruments more of the kernel with
each release
 Often expanding events (like TX Enqueue)
 379 wait events in 9iR2
 871 wait events in 10GR2
 928 wait events in 11.1

22

Oracle Wait Interface

 V$SESSION_WAIT (X$KSUSECST)
• SID (join to v$session)
• EVENT
• P1, P1RAW, P2, P2RAW, P3, P3RAW
• STATE = ‘WAITING’ – currently waiting on event
• STATE = ‘WAITED…’ – currently on CPU (or in queue)

 Oracle 10g added this info to V$SESSION

23

Oracle Sessions

 V$SESSION (X$KSUSE)
• SID
• USERNAME
• SQL_HASH_VALUE

– Join to V$SQL

• PROGRAM
• MODULE / ACTION

– DBMS_APPLICATION_INFO

• PLAN_HASH_VALUE
– Join to V$SQL_PLAN

24

Base Query

SELECT
sid, username, program, module, action,
machine, osuser, sql_hash_value, …
decode(state, ‘WAITING’, event, ‘CPU’) event,
p1, p1raw, p2, …,
SYSDATE

FROM V$SESSION s
WHERE s.status = ‘ACTIVE’
AND event NOT IN (<idle wait events>);

25

Additional Information

 V$SESSION
• service_name, machine, client_info
• row_wait_obj#, blocking_session

 Go back later to get
• Sql_text from v$sql
• SQL stats from v$sqlarea
• Execution plan from v$sql_plan
• Object info from dba_objects

26

Active Session History

 V$ACTIVE_SESSION_HISTORY
• Data warehouse for session statistics
• Oracle 10g and higher
• Data is sampled every second
• Holds at least one hour of history
• Never bigger than:

– 2% of SGA_TARGET
– 5% of SHARED_POOL (if automatic sga sizing is turned off)

 WRH$_ACTIVE_SESSION_HISTORY
• Above table gets flushed to this table

27

Top Wait Time (52 Customers)

 db file sequential read - 28%
 db file scattered read - 27%
 CPU - 12%
 direct path read / write - 11%
 buffer busy waits - 5%
 log file sync - 3%
 library cache lock - 2%
 log buffer space - 2%

Case Study One
Hot Block Issue

29

Problem Observed

 Critical situation: application performance
unsatisfactory
• All email coming into and going out of the

company was tracked in order to find:
– Viruses
– Espionage
– Also for legal compliance reasons

• However, email was getting behind
• Email not getting to end-users for several hours
• Declared a top priority in company

30

Wait Events During Problem

Buffer busy
waits

Query that
is doing

“real” work

Log file
waits

31

What do we know?

 Which SQL: DDL or Commits
SQL hash_value=0

 Which Resource: buffer busy waits
log file waits

 How much time: 163 Hours of wait
time per day

32

“buffer busy waits” Description

 Buffer is being read into cache by another
session and this session is waiting for that
process to complete.
• In Oracle 10g buffer busy waits are further refined

and this becomes “read by other session”

 Buffer is already in the cache but in an
incompatible mode, e.g., another session is
changing it.

33

“buffer busy waits” Description

 P1 – file number information
 P2 – block number information

SELECT owner, segment_name, segment_type
FROM dba_extents
WHERE file_id = &P1
AND &P2 BETWEEN block_id AND block_id + blocks -1

 Gives information about the object being
waited for

34

“buffer busy waits” Description

 Waiting on Data Blocks
• Tune Inefficient Queries
• Eliminate Hot Blocks

 Waiting on Segment Headers
• Optimize PCTFREE / PCTUSED
• Use Multiple Freelists
• Use Larger Extents
• Optimize Application

35

“buffer busy waits” Analysis

36

Results

 Found hot block problem
• “buffer busy waits” was waiting for Block #2 in

the file “…staging01.dbf”
• The email processing code was creating a series of

staging tables, every time it executed

 Solutions
• Started using temporary tables vs. create/drop

distinct tables each time the process ran

Case Study Two
DB File Scattered Reads

38

Problem Observed

 Problem: One database using excessive CPU
resources on a shared server, impacting other
customers
• High wait accumulation during business hours
• 20 Hours Every Day
• Other applications databases were being starved of

CPU and I/O resources

39

Investigation

Two statements responsible for nearly all of the wait time

40

Investigation

 Lots of wait time for db file scattered reads for SQL
1840280609 (primary consumer from previous slide)

41

What do we know?

 Which SQL: 1840280609
(voting tally)

 Which Resource: scattered read
buffer busy waits

 How much time: 20+ Hours
Every Day

42

Hypotheses: Oracle Interpretations

Key Questions:
1. Is full table scan necessary?
2. What causes a full table scan for this SQL

Statement?

Two Alternative paths for optimization:
I. Eliminate Full Table Scan

1. Add Index / Collect Histograms
2. Update Statistics
3. Utilize Query Hints

II. Full Table Scan Required - Improve response time
1. Parallelized Reads
2. Optimize I/O Subsystem
3. Optimize Application

43

I. Unnecessary Full Table Scan?

Solutions:
1. Add / Modify index(es) on the table
2. Update table and/or index statistics if proper

index not being used
3. Add hint to use existing index

44

Full Table Scan is Needed

Two alternative paths for optimization:

I. Eliminate Full Table Scan
• There isn’t a need to read the whole table, so we

need to find the right shortcut

II. Improve response time
• We need to read most or all of the table anyway,

so let’s just figure out how to do it faster

45

Solutions:
1. Use Parallel Reads
2. Set Database Parameters
3. Improve I/O Speed
4. Optimize the application

II. Improve Response Time for Db
File Scattered Reads

46

1. Use Parallel Reads = Faster FTS

 Parallel Reads
• Can be set at the table level (use with caution)
Alter table customer parallel degree 4;

• Normally used by hinting in the SQL Statement
select /*+ FULL(customer) PARALLEL(customer, 4) */ customer_name

from customer;

 A delicate tradeoff
• sacrifice the performance of others for the running query.
• Parallel Query is designed to maximally utilize your hardware – does

not play well with others.

 Not necessarily efficient
• Just may be faster.
• Parallel Reads may actually do twice the work of a serial query but

have four workers, thus finishing in half the time while using 8x
resources

47

2. Set database parameters

 DB_FILE_MULTIBLOCK_READ_COUNT
• specifies the maximum number of blocks read in one I/O

operation during a sequential scan
• Impacts the optimizer
• Reduces number of system I/Os calls required to read a set

of data
• For OLTP, typically set to between 4 to 16, in newer versions

of Oracle it may be best left unset
• Optimizer will more likely to FTS if set too high

 Ensure that the database read requests are synced up
with the O/S.

 This gets tricky if different block sizes are used in
different tablespaces

48

3. Improve I/O speed

 Get your SA involved
 Investigate I/O sub-system

• Iostat, vmstat, sar, … for potential problems
• Monitor during high activity
• There may be a whole host of things wrong

 Investigate contention at the disk/controller
level.
• Learn which disks share common resources
• Use more disks to spread I/O and reduce hot spots

 Investigate caching and current memory
usage

49

4. Optimizing the Application

 Review application – do you have access to
code for changes?
• No – look into stored outlines

 Techniques to Optimize a statement:
• Reduce the number of calls for a SQL

– Caching the data in the application
– Creating a summary table (perhaps via a materialized view)
– Eliminating the need for the data

• Retrieve Less Data with each statement
– Add fields to the WHERE clause

50

Results

 Added indexes to table

Full Table
Scan Fixed

51

Results

 Statement statistics – 24 hour snapshots

(1,298,177,925)
(766,490,774)

66
(15,700)
(15,725)

Difference

2,064,5361,300,242,461Buffer gets
0766,490,774Disk reads

568502Parses
539,170554,870Rows processed
539,147554,872Executions
AfterBeforeStatistic

Case Study Three
DB File Sequential Reads

53

Problem Observed

 Data Warehouse loads were taking too long
 Noticed high wait times on “db file sequential

read” wait event
 DBAs were confused – why are data loads

“reading” data

54

Investigation

55

Investigation for an INSERT Statement

Sequential read time
by object for SQL

56

What do we know?

 Which SQL: Load Process

 Which Resource: DB File Sequential
Read

 How much time: 5 hour+
90% of wait time

57

Investigating db file sequential reads

 Often considered a “good” read
 DB file sequential reads normally occur during

index lookups
 Single-block read

• P1 – file id
• P2 – block id
• P3 – number of blocks read
• Join to DBA_EXTENTS (see buffer busy waits)

58

Hypotheses: Oracle Interpretations of
Sequential Reads

Causes of excessive wait times:
I. Reading too many index leaf blocks
II. Low cardinality first column index
III. Not finding block in buffer cache forces disk

read
IV. Slow disk reads

59

I. Reading too many index and table
blocks (cont)

1. Rebuild Fragmented Indexes
• alter index rebuild [online];
• Consider

http://www.jlcomp.demon.co.uk/index_efficiency.html

2. Compress Indexes
• alter index rebuild compress;
• Uses more CPU

3. Multi-column indexes
• Avoid the table lookup
• Will create a larger index

4. Pre-sort Table data

60

II. Low cardinality first column index

 If first column of index is low / medium
cardinality, much time is spent scanning the
index leaf blocks

 The additional columns do not lower the
number of leaf blocks that are read.

 Solutions:
• Use a leading column with better cardinality
• Compress the index

61

III. Not finding block in buffer cache
forces disk read

 Db File sequential reads occur because the
block is not in the buffer cache.

 How do we make sure more blocks are
already in the cache?

 Solutions
1. Increase the size of the buffer cache(s)
2. Put the object in a cache where it is less likely to

get flushed out

62

IV. Slow disk reads

 With databases, it often comes down to this –
the disk just needs to be faster
 Put certain objects on the fastest disk
 O/S file caching using special software that

makes normal files perform like raw files
 Increase Storage System Caching – such as

an EMC cache

63

Results

 Many sessions were loading data and all were
updating low cardinality indexes
 Modified index and noticed a 50%

performance improvement in an INSERT
 Customer is also analyzing global vs. local

indexes
 Reviewing usage of bitmap indexes
 Removed unused indexes
 Enhanced the disk subsystem

Case Study Four
Cache Buffers Chains Latching

65

Problem Observed

 Problem: High Wait on Production CRM
Database
• Accumulated wait 20 hours (72,000 sec) during

peak online hours
• End users in Virginia were complaining vigorously –

they could not perform their jobs

66

Investigation

67

Investigation – which events?

68

Investigation – SQL statement

69

What do we know?

 Which SQL: 224454554

 Which Resources: CBC latching
buffer busy waits

 How much time: A bunch
every weekday

70

Cache Buffers Chains Latching

 CBC latches protect memory structures called hash
chains, which hang off hash buckets

 The hash chains are fixed-depth linked lists of buffer
headers that point to the actual buffers in the cache

 The data block address (DBA) is hashed to find the
hash chain to be searched to find the location in
cache

 Accessing a block on the hash chain requires
acquisition of the latch protecting that particular chain
(9i and later allows shared read-only access for some
operations – although apparently not FTS)

 This prevents other processes from modifying the
chain

71

CBC Latches and Hash chains

CBC Latch

Hash Bucket

Buffer Headers

Buffers in cache

72

Cache Buffers Chains Latching

 Excessive CBC latching can be problematic
because
• All LIOs require latch gets
• CBC latches cover many buffer headers, and only

one process can exclusively hold a CBC latch
• Once a process goes to acquire a latch, it either

gets the latch or spins/sleeps until it gets the latch
• Latching is not FIFO
• Latching drives up CPU

73

Cache Buffers Chains Latching

 Causes
• Inefficient SQL statements

– Too many LIOs
– High concurrency
– Bad plans

• Hot Blocks
– Find hot blocks via v$session_wait.p1raw (latch address)
– Confirm hot blocks by looking at touch count in x$bh.tch for x$bh.hladdr (from

v$session_wait)
– Map x$bh.obj to object_id or data_object_id from dba_objects
– Determine why the application hits those blocks so frequently

• Long hash chains
• A combination of the first two

74

Finding chains with hot blocks

select sid, p1raw, p2, p3, seconds_in_wait, wait_time, state
from v$session_wait
where event = ‘latch free’
order by p2, p1raw;

p1raw is the latch address
p2 is the latch number
Sessions waiting on the same latch address shows you have hot blocks on a
chain

From OWI book.

75

Cache Buffers Chains Latching

 Cures
• Find and fix culprits

– Tune SQL to require fewer LIOs

• Reduce concurrency
– Usually by fixing the application

76

In this case…

 Inefficient SQL, made worse by high
concurrency
 SQL was not using indexes, lots of LIOs
 Lots of folks running the SQL

• It took too long
• The application must be hung! I’ll resubmit…

– Again
– And again

77

Results

 SQL statement was examined, and
determined that an implicit type conversion
was causing indexes to not be used:
comparing numbers and character strings
 Showed up in the filter predicates from

dbms_xplan output
 Changed the code to use the correct values

78

Results

79

Results

80

CPU consumption (before)

81

CPU consumption (after)

82

Wait Events for Development

 Tuning SQL for optimal performance
 Debug/test/integrate/pilot process
 Understand impact on existing database
 Understand Oracle impact on application

performance
 View into production for better development

prioritization and feedback
 Reduce finger-pointing

83

Conclusion

 Conventional Tuning focused on “system
health” and lead to finger-pointing and
confusion

 Wait event tuning implemented according to
three principles is the best way to tune

 Two compliant tools types
• Trace profiling tools
• Continuous DB-wide monitoring tools

84

References

Shee, R.; Deshpande, K.; Gopalakrishnan, K. 2004. Oracle Wait
Interface: A Practical Guide to Performance Diagnostics &
Tuning, McGraw-Hill/Osborne

85

Questions?

86

Thank you!

Thank you for coming to this presentation

Contact information for further questions
• deedsd@nationwide.com

– Please put “wait time presentation in the subject.

