SLOB

The Silly Little Oracle Benchmark
Release 2.3

L)Y ol B 1 0 =) 4

3 Tod £€ o0 (010 0 L 4
SLOB Overview And Archite@Cture ... 5
Understanding The SLOB Methodccinmmssmmssanss 5
SLOB Data BlOCK.....ccuiimiimisissssissasssassnanas 5
Understanding Compression and SLOB..........sssssssssssssssssssssssssssssnss 6
SLOB Block Read and Write OPerationsssssssssssssssssssssssssssssssssanss 6
SLOB Block Read (SELECT) OPErationsoueeereenmeueesssessesssesssesssssssesssesssssssssssssssssssssasssssssesssees 6
SLOB Block Write (Modify DML) OPerations.....cueereeuseeseesseesseessesssesssssssesssssssssssssesssssssssssees 6

The SLOB Schema MoOdELS ... 7
Understanding Single and Multiple Schema SLOB ... 7
Understanding SLOB Hot Spots and Hot Schema ... 10
SLIOB HOE SPOL.ururuermueeesseessseesssesssssesssssesssssssssssessssesssssssssssssssssesssssesssssesssssesssssesssssesssssesssssesssssesssssesssssenes 10

Y 00230 5 o) A oo =) o= TP 12
SLOB ThinK Tilmeccusciiinsmss s ss 13
SLOB Key Performance Indicators / Throughput Metrics......ccummn. 13
SLOBops / SQL Exectutions / LIOPS (Logical /0 Per Second).......ouneneeneerneesseesseenneens 14

L3 0T 110 15
Tablespace REQUITrE@MENTtcocviiimsmnmsissmsmsssssssssssssiss s ssss s snsssss 15
SYS VIPC SEMAPRNOTES ...ceiciiiinisssiissssssssssssssssssssssssssss s s s ssssssssssssssssssssssssss s s sssasssnnes 15
Database Creation Kit ... 16

LD F T e T 00) . 16
THE SETUP.SH SCTIPL courieeriereeeeireeeect ettt b st ss s ss s bbb s s e 16
Performance TeSting ... 18
The runit.Sh SCript.. s ————————————————— 18
0S-Level Performance Data ... s 21
ADOUL THE AD_STATS.0UL FILE ettt e e eeeeeeseeeeeeeseseeeeeeeseeeee et seseeesesesenenanenenananenananns 21
SLOB Tunable Parameters........mmmmsmssmssssssssssssssssssssssssssssss 22
L0050 07 N 1 O3 22
L0\ 01 22
L0 1010 22

1] 0 N 0 22
LU0 G 111 23
REDO_STRESS ...ociiutsiimsssssssssssssssssssssssssss s sss s s s s s s snsnnns 23
LOAD_PARALLEL_DEGREE ..ot ss 23
THREADS_PER_SCHEMA ..ot sssssss s ssassss s ssassssssssssasssssssssassssssss 24

0 L0 2 5 (0. 1 o 0 0 24

5 00 S0 N 24
HOTSPOT_OFFSET_MB ..ot ssssssssssssssssssssssassssssssssssssssssssssssns 24
HOTSPOT_FREQUENCY ...ootitsimnsmsmsssnens 24
HOT_SCHEMA_FREQUENCY ...cooiunmnmnmmssmsssssmsssnss 24
THINK_TM_FREQUENCYcoiiiuimsmimnsmsmssasssssssssassssssses 24
THINK_TM_MIN ..couitiiiiusmsssssmsss s ssssassss s s asassss s ssasssssssssassssssssssassnsssses 25
THINK_TM_MAX...citsciussses 25
SQL*Net Related Parameters ... irissssssssesscssessessesssssssssssssssssssnssnssnssnssnssessessnsssssssnsanes 25
ADMIN_SQLNET_SERVICE......coereeremmesssesssssessssessssesssssssssssssssssssssssssssssssssesssssesssssssssssessssesssanes 25
SQLNET_SERVICE_BASE......eeeeemneessseesssseessssssssssessssssssssesssssssssssssssssesssssesssssesssssesssssesssssesssssessssseses 25

SQLNET_SERVICE_MAX ...t bbb s b ssssss st sssasns 26

SYSDBA _PASSWD .ttt ss b ss s s b b et sb s s b e bbb se b e m b e r s b s 26

The awr_info.Sh SCript... s ——————— 26
Legend For The awr_info.sh Script COIUMNS ... 27

2 0 27

Y DRI (0]\ 27

D N S 2 27

)] 2 208 2 O 27

)] 2 200 1 o 27

D€ 1 O 60 1 2 27

75 O 27

o R D AN L 27

R DY N D Y 2 T 27

e TAT 2 10 D 27
WRITE MBS e e b s s e s b e R e bbb e e bbb ar bt es 27
RED O MBSt e sa s e e b e bbb e s b e b b e aE b e R b e b bbb ares 27

)] I S -\ R 27

)] S S - 28

)] Sl S S £ 28

)] 2 S VAV I S 28

I3 2 AT - N 28

B0) S AT N U 28
AdVANCEA TOPICS cverirmsnrermssssmsmssssmsssssssssssss s b n s n s A e nnan s 28
Where To Get More INformationcccuueiimiismssssmismsssssssssssssssssssssssssssssssssnssssmsssssssses 29

Disclaimer

THIS DOCUMENTATION IS PROVIDED FOR REFERENCE PURPOSES ONLY. WHILE
EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE
INFORMATION CONTAINED IN THIS DOCUMENTATION, IT IS PROVIDED "AS IS"
WITHOUT ANY WARRANTY WHATSOEVER AND TO THE MAXIMUM EXTENT
PERMITTED, PEAK PERFORMANCE AND KEVIN CLOSSON d.b.a PEAK
PERFORMANCE SYSTEMS DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY,
NONINFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT
TO THE SAME. PEAK PERFORMANCE SYSTEMS SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION, DIRECT, INDIRECT,
CONSEQUENTIAL OR INCIDENTAL DAMAGES, ARISING OUT OF THE USE OF, OR
OTHERWISE RELATED TO, THIS DOCUMENTATION OR ANY OTHER
DOCUMENTATION. NOTWITHSTANDING ANYTHING TO THE CONTRARY, NOTHING
CONTAINED IN THIS DOCUMENTATION IS INTENDED TO, NOR SHALL HAVE THE
EFFECT OF, CREATING ANY WARRANTIES OR REPRESENTATIONS FROM PEAK
PERFORMANCE SYSTEMS AND KEVIN CLOSSON d.b.a PEAK PERFORMANCE
SYSTEMS (OR ITS SUPPLIERS OR LICENSORS).

Background

Silly Little Oracle Benchmark, also known as SLOB, is a set of computer programs
and supporting files. SLOB is a misnomer because SLOB is not really a benchmark.
SLOB is a platform performance and stability-testing framework that makes Oracle
Database execute SQL.

SLOB embodies a method for testing hardware platforms to determine suitability for
Oracle Database deployments requiring high performance. Some say SLOB might
have been more aptly named Simple Little Oracle Benchmark and this is true. But
simple can be powerful! Consider steam (water vapor), for example. There is
nothing complex about steam but when harnessed properly steam is a force to be
reckoned with. Powerful things can be simple and that is a good thing.

SLOB is simple to understand—and use.
SLOB drives Oracle Database to perform massive-scale SQL execution with minimal
host CPU utilization. This characteristic is true whether testing for physical I/0

capability or when the entire data set is cached in the SGA buffer pool.

In short, SLOB is a necessary tool for studying the underlying platform limits that
often impact Oracle Database performance.

SLOB Overview And Architecture

Understanding The SLOB Method

At the heart of SLOB is the “SLOB method.” The SLOB Method aims to test platforms
without application contention. One cannot drive maximum hardware performance
using application code that is, for example, bound by application locking or even
sharing Oracle Database blocks. That’s right—there is overhead when sharing data
in data blocks! But SLOB—in its default deployment—is immune to such contention.

While the default SLOB deployment is free of application contention, SLOB can be
configured to test with varying degrees of application contention if so desired.

SLOB Data Block
The basis of the default, contention-free behavior of SLOB is the sparse data block.
Figure 1 depicts how SLOB places exactly a single row of data per data block.

As depicted in Figure 1, the default SLOB data consists of a row with a key column
and a series of VARCHAR2(128) columns to take up space within the block.

An Oracle Database 8KB Data Block
Every SLOB data block contains only a single row

!

Figure 1: The Default Oracle Block Layout With SLOB

A default SLOB row is roughly 2KB so SLOB data blocks remain mostly in their
initialized state (header and zeroes).

Understanding Compression and SLOB

Due to the SLOB Method, one should not use the default SLOB schema for testing
compression technology. Simply put, default SLOB data compresses too deeply to be
of any use in assessing compression technology. However, the following EMC paper
shares information about how to adapt the SLOB kit to alternative schemas for such
purposes as testing compression:

Lab Report: Oracle Database on EMC XtremlIO - A Compression Technology Case
Study.

SLOB Block Read and Write Operations
SLOB operations fall into both read and write categories.

SLOB Block Read (SELECT) Operations

During read operations, SLOB does not access the VARCHAR2 columns. Doing so
would burden host CPU unnecessarily. Instead, SLOB simply locates the block (via
an index on the key column) and performs the COUNT() aggregate on the second
ordinal column. Performing COUNT(c2) on this schema forces a lightweight block
access but not an expensive “row walk.” In pseudo code, SLOB performs read
operations as follows:

SELECT COUNT (c2) FROM <slob table> WHERE <key> BETWEEN <random key> and <random key>.

As the pseudo code suggests there is a set of rows—and therefore blocks—being
accessed on every execution of this statement. The SLOB test administrator can
control how many blocks are accessed in each operation. While it’s true that the
blocks accessed in a single SLOB operation are logically adjacent in the SLOB active
data set, they are guaranteed to be physically scattered across the tablespace
containing the SLOB schema(s).

SLOB Block Write (Modify DML) Operations

For write operations SLOB uses an UPDATE statement with the same method of
selectivity as the SELECT statement above. The UPDATE statement manipulates
only the non-indexed columns so as to avoid index maintenance overhead. As
described later in this document the SLOB test administrator can chose varying
degrees of data modification intensity for each SQL execution (a.k.a., SLOBop) by
directing SLOB to manipulate more, or fewer, columns in each operation. Changing
the VARCHAR columns allows for the generation of redo logging while not suffering
the overhead of maintaining indexes.

The SLOB Schema Models
SLOB allows the test administrator to choose between two schema models:

¢ SLOB Multiple Schema. One can think of SLOB Multiple Schema as a form of
multitenant architecture. As described above, this manner of SLOB testing
ensures there is no application data sharing. With SLOB Multiple Schema the
test administrator dictates how many SLOB threads (Oracle Database
sessions) will connect to the instance and perform SLOB operations against
their respective schema. The default is a single SLOB thread per schema. The
SLOB test administrator can choose to load large numbers of schemas but
then test only subsets of schemas or, indeed, the entire set of schemas.

* SLOB Single Schema. As a slight variation to the SLOB Method, the test
administrator can choose to deploy a single SLOB schema. In this model
multiple SLOB threads (Oracle Database sessions) perform SLOB operations
on the same schema. This manner of SLOB testing introduces shared data
contention at the block level. There is nothing that would prevent two SLOB
threads (Oracle Database sessions) from selecting the same blocks of data in
two concurrent SLOB operations. Of course the larger the active data set the
lower the frequency of such shared data contention.

Understanding Single and Multiple Schema SLOB

Single Schema Model

SLOB threads (Oracle Database sessions) operating in the Single Schema model run
the risk of visiting the same data. When testing the SLOB Single Schema model one
might start to see wait events such as read by other session. When events like read by
other session are raised it indicates CPU cycles spent that did not result in a physical
[/0—as would be the case in the strict SLOB Method. This impacts the physical I/0
per DB CPU achievable by the platform being tested.

When sharing data in the Single Schema model a session may spend processor
cycles only to find out that another session is already reading the block of data and
thus the session goes to sleep on a read by other session wait event to be notified
when the block has been installed in the SGA buffer pool. This style of testing might
be desirable and, indeed, the odds of choosing the same data between SLOB threads
is a factor of how many threads are running and how large the SLOB active data set
is.

Figure 2 shows a depiction of Single Schema SLOB residing in a tablespace that is
larger than the SLOB active data set. As the graphic shows, the active data set in this
case is 500GB as per the slob.conf setting of the SCALE parameter. More information
will be given later on slob.conf parameters.

SLOB Single Schema Model
This is a single table with a single index on the first ordinal column

Tablespace In Oracle Database

Figure 2: SLOB Single Schema Model

Figure 3 depicts random physical locations of SLOB blocks. In the example, SLOB
block 4201 would have the row with the key value 4201 in it. This diagram helps
one understand how it is that SLOB drives such a dramatically random block access
pattern. As explained above, SLOB chooses a range of blocks upon which to perform
a SLOB operation. Consider an example where the low-bound key is, say, 4201 and
the high-bound key is 4457 (a slob.conf->WORK_UNIT of 64) the blocks would be
scattered across a vast logical and physical area within the tablespace.

A Single SLOB Schema
This is a single table with a single index on the first ordinal column

(SLOB Block 2917653

.
L]

SLOB Block 4201

Tablespace In Oracle Database

Figure 3: SLOB Data Random Block Locations

Multiple Schema Model

Figure 4 shows a depiction of the SLOB Multiple Schema model. Each of these
schemas (1 through 12 shown) is exactly the same, architecturally speaking, as a
Single Schema as shown in Figure 2—just smaller.

SLOB allows the test administrator to load up to 4096 schemas in the Multiple
Schema model. The test administrator also decides how many SLOB threads (Oracle
Database sessions) to connect to each schema during a SLOB test. It is not necessary
to test all schemas. For example, the test administrator can choose to load, say, 128
schemas and then, if so desired, test with 64 schemas.

As Figure 4 shows this manner of SLOB testing is a form of multitenant testing. Each
schema has it’s own sessions attached but all share Oracle Database instance
background processing such as Database Writer and Log Writer.

Multiple SLOB Schemas
Each is a single table with a single index on the first ordinal column

’ Tablespace In Oracle Database ‘

Figure 4: SLOB Multiple Schema Model

Understanding SLOB Hot Spots and Hot Schema

SLOB Hot Spot

As explained above, SLOB default block accesses are completely random. However,
under some testing scenarios it is desirable to focus the SLOB read and write
activity to a subset of the data—a Hot Spot. Simply put, a SLOB Hot Spot is a subset
of the blocks in a SLOB Schema. Generally a SLOB Host Spot is a small fraction of the
total size of a SLOB Schema.

SLOB Hot Spot functionality is supported with both SLOB Single Schema and SLOB
Multiple Schema mode.

A SLOB Hot Spot is configured by the SLOB test administrator as a subset range of
blocks (expressed in megabytes) per SLOB schema. For example, the administrator
might choose to load 1 terabyte into the SLOB Single Schema model and further
configure a SLOB Hot Spot of only, say, 1 gigabyte. Finally, the administrator then
would choose the Hot Spot frequency. SLOB Hot Spot frequency is configured as
every Nth SLOB operation. If, for example, the administrator configures a Hot Spot
frequency of 3 then every 314 SLOB operation (read or write) would fall into the
range of blocks in the SLOB Hot Spot. SLOB Hot Spot functionality is the same
whether SLOB Multiple Schema or SLOB Single Schema is being tested. SLOB Hot
Spot related tunable parameters are covered in-depth in the SLOB Tunable
Parameter section of this document.

10

Figures 5 and 6 depict SLOB Hot Spot in Single Schema mode and Multiple Schema

mode respectively.

A Single SLOB Schema
This is a single table with a single index on the first ordinal column

\

|

Tablespace In Oracle Database

Figure 5: SLOB Single Schema Model with Hot Spot

Multiple SLOB Schemas With SLOB Hot Spots

Each Schema:

SCALE=10G DO_HOTSPOT=TRUE
HOTSPOT_MB=200 HOTSPOT_OFFSET_MB=100

|

Tablespace In Oracle Database

Figure 6: SLOB Multiple Schema Model with Hot Spot

11

SLOB Hot Schema

By default SLOB is free of application contention. However, if so desired the
administrator can choose to introduce application contention to a SLOB test through
the use of the SLOB Hot Schema functionality. SLOB Hot Schema only makes sense in
SLOB Multiple Schema mode.

When SLOB Hot Schema is enabled, every Nth SLOB operation (read/write) occurs
on the SLOB schema owned by the first SLOB schema created—user1 (created in the
database with the GRANT statement). This style of SLOB testing introduces a
significant amount of application-level contention. Moreover, in Real Application
Clusters (RAC) testing situations, SLOB Hot Schema places a significant load on the
RAC interconnect.

SLOB Hot Schema and SLOB Hot Spot can be used in combination to further vary the
level of contention being tested.

The SLOB tunable parameters related to Hot Schema are covered in the SLOB
Tunable Parameter section of this document.

Figure 7 depicts SLOB in Single Schema mode with both Hot Schema and Hot Spot
functionality in use.

Multiple SLOB Schemas With SLOB Hot Spots
and a Hot Schema

HOT_SCHEMA_FREQUENCY=<non-zero>

Each Schema:
SCALE=10G DO_HOTSPOT=TRUE
HOTSPOT_MB=200 HOTSPOT_OFFSET_MB=100

Tablespace In Oracle Database

Figure 7: SLOB Multiple Scheme Model with Hot Spot and Hot Schema

12

SLOB Think Time

By default SLOB threads perform SLOB operations in a loop without any pauses.
Pauses simulate human user think-time. The value of testing SLOB with think time is
it allows for very large numbers of sessions connected to the database instance
without saturating the system. Large numbers of sessions place interesting
demands on the platform by way of scheduling and memory management.

To test with SLOB think time the SLOB test administrator chooses the minimum and
maximum think time as well as the frequency at which think times will be injected
into every SLOB thread’s work loop.

An example of SLOB with think time is, for instance, 1024 SLOB threads (database
sessions) executing SLOB operations with think times averaging between .05 and .5
seconds at a frequency interval of 3. As such every third SLOB operation will sleep
for arandom value between .05 and .5 seconds. The slob.conf parameters for tuning
SLOB think time are covered in the SLOB Tunable Parameter section.

The default is no SLOB think-time.

SLOB Key Performance Indicators / Throughput Metrics

The key performance indicator (KPI) for SLOB is not transactions per time-unit such
as Transactions per Second (TPS) or Transactions per Minute (TPM). These KPI are
reserved for transactional workloads. Oracle is obviously a very capable transaction
engine. If one wishes to test Oracle transactional performance as an indicator of
platform suitability for one’s application then the only accurate approach is to test
one’s application.

Testing arbitrary transactional code is not an indicator of what a platform will
sustain for any workload other than the synthetic one being tested. On the other
hand, a non-transactional workload such as SLOB will offer clear indication of what
the platform can sustain in such key areas as transaction logging throughput and
random block I/0 while showing how much processor bandwidth remains to
accommodate one’s own application code. By testing cached SLOB, one can get a
very clear idea how well the platform handles critical scalability underpinnings such
as logical [/O—after all, a platform that can’t scale cache-hits cannot scale cache
misses and thus physical 1/0.

SLOB performance is generally expressed in the following terms:
e SLOBops, or

* SQL Executions
* Logical I/0 Per Second

1R

SLOBops / SQL Executions / LIOPS (Logical I/O Per Second)
SLOB workload metrics are:

* Physical I/0 Testing
o SQL Executions.
o Physical IOPS (a.k.a., PIOPS)
* Logical I/0 Testing
o Database Logical I/O per second (a.k.a., LIOPS). A Logical [/O is a
cache hit in the SGA buffer pool of the Oracle instance.

Physical I/0 Per Second or SQL Executions

The metric of throughput is based on the type of testing being conducted by the
SLOB test administrator. Consider, for example, how to express SLOB results in the
case of testing cached SLOB.

The Load Profile in Figure 8 was taken from a test of cached SLOB on a two-socket
(2520c40t) Xeon based server. One could express this test result as either 47,200
sqlexec/s or 12,199,141 Logical [/O per second using the term LIOPS.

Load Profile Per Second Per Transaction Per Exec Per Call
DB Time(s): 19.6 60.1 0.00 5.11
DB CPU(s): 19.5 59.9 0.00 5.10
Backaround CPU(s): 0.1 0.3 0.00 0.00
Redo size (bytes): 36,969.2 113,338.3
Logical read (blocks): 12,199,141.1 37,399,516.7
Block changes: 107.0 327.9
Physical read (blocks): 0.9 2.8
Physical write (blocks): 0.2 0.6
Read I0 requests: 2.9 2.8
Write IO requests: 0.1 0.3
Read IO (MB): 0.0 0.0
Write I0 (MB): 2.0 0.0
IM scan rows: 0.0 0.0
Session Logical Read IM:
RAC GC blocks received: 4.2 12.8
RAC GC blocks served: 5.2 16.0
User calls: 3.8 11.8
Parses (SQL): 9.0 27.6
Hard parses (SQL): 0.1 0.2
SQL Work Area (MB): 0.5 1.4
Logons: 0.4 1.2
Executes (SQL): 47,200.7 144,705.7
Rollbacks: 0.0 0.0
Transactions: 2.3

Figure 8: Oracle AWR Report Example. Cached SLOB.

Figure 9 shows the Load Profile of the same server performing physical I/0 after
decreasing the size of the SGA buffer pool. The SLOB test administrator in this case
could express these results as either the sum of physical read and write [/0 requests
per second (116,943 + 24,556 = 141,499 PIOPS) or 583.5 sqlexec/s.

14

Load Profile

AN

DB Time(s):

DB CPU(s):

Background CPU(s):

Redo size (bytes):
Logical read (blocks):
Block changes:

Physical read (blocks):
Physical write (blocks):
Read IO requests:

Write IO requests:

Read IO (MB):

Write IO (MB):

IM scan rows:

Session Logical Read IM:
RAC GC blocks received:
RAC GC blocks served:
User calls:

Parses (SQL):

Hard parses (SQL):

SQL Work Area (MB):
Logons:

Executes (SQL):
Rollbacks:
Transactions:

Per Second Per Transaction Per Exec Per Call
61.9 0.6 0.11 5.17
14.2 0.1 0.02 1.18
2.1 0.0 0.00 0.00
19,242,267.9 172,970.5
142,071.0 1,277.1
59,509.9 534.9
117,161.7 1,053.2
28,267.2 254.1
116,943.4 1,051.2
24,556.6 220.7
915.3 8.2
220.8 2.0
0.0 0.0
339.5 3.1
5.4 0.1
12.0 0.1
25.7 0.2
5.2 0.1
1.5 0.0
1.3 0.0
583.5 5.3
0.0 0.0
111.3

Figure 9: Oracle AWR Report Load Profile. SLOB Physical I/0.

In general, folks in the SLOB user community tend to express results in either LIOPS

or PIOPS terms.

Using SLOB

Tablespace Requirement

The SLOB setup script (setup.sh) requires a tablespace with sufficient space to
contain the SLOB schemas. The SLOB test administrator can chose to create a
tablespace in a file system or ASM.

The default space requirement is roughly 12 gigabytes for setup.sh plus any
ancillary overhead in TEMP segments for such purposes as sort spill. Naturally,

UNDO segment space will be required.

There is more information on setup.sh later in this document.

Sys V IPC Semaphores
The SLOB “trigger kit” requires a single SYS V IPC semaphore set that contains a

single semaphore.

15

Database Creation Kit

The SLOB kit provides a simple database creation kit under the
SLOB/misc/create_database_kit directory. The easiest way to get started with SLOB
is to either a) provision storage for a file system and use the Database Creation Kit,
or b) use an existing test database with a special-purpose tablespace allocated for
SLOB.

For more information on the Database Creation Kit please see the README file in
the SLOB/misc/create_database_kit directory.

Data Loading

The setup.sh Script
The setup.sh script is used to load SLOB data. The script takes two mandatory
options:

* Option 1. Tablespace into which SLOB will create and load the test schemas
* Option 2. The number of schemas to create and load

The setup.sh script takes directives from slob.conf to control the number of
database blocks to load in each schema and the degree of parallelism used during
data loading. Please refer to the section entitled SLOB Tunable Parameters for more
information on parameters related to data-loading.

Example of Loading Multiple Schema Model

Figure 10 shows an example of loading 8 gigabytes into 128 SLOB schemas (SLOB
Multiple Schema Model). Notice the parallelism for the loading was 64 and that the
procedure completed 1771 seconds. Loading and indexing 1TB (8GB * 128 SLOB
Schemas) in less than 30 minutes makes SLOB data loading a worthwhile stress-test
in its own right.

1A

$

$ egrep '~SCALE|~LOAD' slob.conf
SCALE=8G

LOAD_PARALLEL_DEGREE=64

$

$ sh ./setup.sh IOPS 128

NOTIFY : 2015.06.11-12:29:57 :

NOTIFY : 2015.06.11-12:29:57 : Begin SLOB setup.

NOTIFY : 2015.06.11-12:29:57 : Load parameters from slob.conf

SCALE: 8G (1048576 blocks)
LOAD_PARALLEL_DEGREE: 64
ADMIN_SQLNET_SERVICE: ""
SQLNET_SERVICE_BASE: ""

Connect strings to be used:
ADMIN_CONNECT_STRING: "/ as sysdba"
NON_ADMIN_CONNECT_STRING: " "

NOTIFY : 2015.06.11-12:29:57 : Testing connectivity to the instance to validate slob.conf settings

NOTIFY : 2015.06.11-12:29:57 : Testing Admin connect using "/ as sysdba"

NOTIFY : 2015.06.11-12:29:57 : Successful test connection: "sqlplus -L / as sysdba"

NOTIFY : 2015.06.11-12:29:57 : Dropping prior SLOB schemas. This may take a while if there is a large number of old schemas.
NOTIFY : 2015.06.11-12:30:06 : Deleted 1 SLOB schema(s)

NOTIFY : 2015.06.11-12:30:06 : Previous SLOB schemas have been removed

NOTIFY : 2015.06.11-12:30:06 : Preparing to load 128 schema(s) into tablespace: IOPS

NOTIFY : 2015.06.11-12:30:06 : Loading userl schema

NOTIFY : 2015.06.11-12:30:45 : Finished loading, indexing and gathering statistics on userl schema in 39 seconds
NOTIFY : 2015.06.11-12:30:45 : Commencing multiple, concurrent schema creation and loading

NOTIFY : 2015.06.11-12:30:58 : Waiting for background batch 1. Loading up to user65

NOTIFY : 2015.06.11-12:45:14 : Finished background batch 1. Load / index create / stats gather in 856 seconds
NOTIFY : 2015.06.11-12:45:26 : Waiting for background batch 2. Loading up to user128

NOTIFY : 2015.06.11-12:59:28 : Finished background batch 2. Load / index create / stats gather in 842 seconds
NOTIFY : 2015.06.11-12:59:28 : Completed concurrent data loading phase: 1723 seconds

NOTIFY : 2015.06.11-12:59:28 : Creating SLOB procedure

NOTIFY : 2015.06.11-12:59:28 : SLOB procedure created

NOTIFY : 2015.06.11-12:59:28 : Row and block counts for SLOB table(s) reported in ./slob_data_load_summary.txt
NOTIFY : 2015.06.11-12:59:28 : Please examine ./slob_data_load_summary.txt for any possbile errors

NOTIFY : 2015.06.11-12:59:28 :

NOTIFY : 2015.06.11-12:59:28 : NOTE: No errors detected but if ./slob_data_load_summary.txt shows errors then
NOTIFY : 2015.06.11-12:59:28 : examine /home/oracle/dev/SLOBRAC/2214/cr_tab_and_load.out

NOTIFY : 2015.06.11-12:59:28 : SLOB setup complete. Total setup time: (1771 seconds)

Figure 10: SLOB Multiple Schema Model. 1TB Data Loading.

Example of Loading Single Schema Model

Figure 11 show and example of loading 1 terabyte into SLOB Single Schema Model

using parallelism of 64. As the image shows the procedure completed in 48 minutes.

$

$ egrep '~SCALE|"LOAD' slob.conf
SCALE=1T
LOAD_PARALLEL_DEGREE=64

$

$ sh ./setup.sh IOPS 1
NOTIFY : 2015.06.12-04:08:37
NOTIFY : 2015.06.12-04:08:37
NOTIFY : 2015.06.12-04:08:37

Begin SLOB setup.
Load parameters from slob.conf:

SCALE: 1T (134217728 blocks)
LOAD_PARALLEL_DEGREE: 64
ADMIN_SQLNET_SERVICE: "*
SQLNET_SERVICE_BASE: ""

Connect strings to be used:
ADMIN_CONNECT_STRING: "/ as sysdba"
NON_ADMIN_CONNECT_STRING: " "

NOTIFY : 2015.06.12-04:08:37 : Testing connectivity to the instance to validate slob.conf settings

NOTIFY : 2015.06.12-04:08:37 : Testing Admin connect using "/ as sysdba"

NOTIFY : 2015.06.12-04:08:37 : Successful test connection: "sqlplus -L / as sysdba"

NOTIFY : 2015.06.12-04:08:37 : Dropping prior SLOB schemas. This may take a while if there is a large number of old schemas.
NOTIFY : 2015.06.12-04:08:56 : Deleted 1 SLOB schema(s).

NOTIFY : 2015.06.12-04:08:56 : Previous SLOB schemas have been removed

NOTIFY : 2015.06.12-04:08:56 : Preparing to load 1 schema(s) into tablespace: IOPS

NOTIFY : 2015.06.12-04:08:56 : Loading userl schema

NOTIFY : 2015.06.12-04:56:24 : Finished loading, indexing and gathering statistics on userl schema in 2848 seconds
NOTIFY : 2015.06.12-04:56:24 : Creating SLOB procedure

NOTIFY : 2015.06.12-04:56:24 : SLOB procedure created

NOTIFY : 2015.06.12-04:56:24 : Row and block counts for SLOB table(s) reported in ./slob_data_load_summary.txt
NOTIFY : 2015.06.12-04:56:24 : Please examine ./slob_data_load_summary.txt for any possbile errors

NOTIFY : 2015.06.12-04:56:24

NOTIFY : 2015.06.12-04:56:24 : NOTE: No errors detected but if ./slob_data_load_summary.txt shows errors then
NOTIFY : 2015.06.12-04:56:24 : examine /home/oracle/dev/SLOBRAC/2214/cr_tab_and_load.out

NOTIFY : 2015.06.12-04:56:24 : SLOB setup complete. Total setup time: (2867 seconds)

$

Figure 11: SLOB Single Schema Model. 1TB Data Loading.

17

Performance Testing

The runit.sh Script

The runit.sh script is the performance test driver. By default it uses parameter
settings in slob.conf. However, one can override certain slob.conf settings with
command line options if so desired. Please refer to the section entitled SLOB
Tunable Parameters for more information on slob.conf parameters.

Figure 12 shows the help text for runit.sh

$

$ sh ./runit.sh bad-commandline-options

FATAL : 2015.07.09-08:49:46 : Single Option Invocation requires one option: A non-zero integer
FATAL : 2015.07.09-08:49:46 : Invalid command line. Abort.

./runit.sh supports the following command usage:

1. Single Option Invocation.
$ sh ./runit.sh <number-of-SLOB-schemas-to-test>

2. Multiple Option Invocation
2.1 This invocation style requires xexactlyx four options.
$ sh ./runit.sh -s <number-of-slob-schemas-to-test> -t <SLOB-threads-per-schema>

NOTE: With Single Option Invocation slob.conf->THREADS_PER_SCHEMA is used. If you
want more than a single SLOB thread per schema set THREADS_PER_SCHEMA in slob.conf.
The default setting for slob.conf->THREADS_PER_SCHEMA is 1.
With Multiple Option Invocation slob.conf->THREADS_PER_SCHEMA is overridden.
The number of SLOB threads per schema is taken from the argument passed
in with the -t option.
EXAMPLES:
Example 1. 256 SLOB schemas each with slob.conf->THREADS_PER_SCHEMA number
of SLOB threads per schema:
$ sh ./runit.sh 256

Example 2. 16 SLOB schemas each with 32 SLOB threads:
$ sh ./runit.sh -s 16 -t 32

NOTE: Example 2 produces 512 (16%32) Oracle Database sessions.

ADDITIONAL INFORMATION: The SLOB documentation at kevinclosson.net/slob or SLOB/doc

S
Figure 12: SLOB runit.sh Help Output.

Figure 13 shows a screen shot of testing Single Schema SLOB. As the image shows
the number of SLOB thread is determined by the slob.conf settings.

3
$ grep THREADS_PER SCHEMA slob.conf
THREADS_PER_SCHEMA

NOTIFY : 2015.07.09-10:33:32 : Debug info being sent to slob_debug.out
NOTIFY : 2015.07.09-10: 2
NOTIFY : 2015.07.09-10:33:32 : Conducting SLOB pre-test checks.

UPDATE_PCT: 20
RUN_TIME: 120
WORK_LOOP: @

SCALE: 2G (262144 blocks)
WORK_UNIT: 16
REDO_STRESS: LITE
HOT_SCHEMA_FREQUENCY: @
DO_HOTSPOT: FALSE
HOTSPOT_MB: 100
HOTSPOT_OFFSET_MB: 1024
HOTSPOT_FREQUENCY: 3
THINK_TM_FREQUENCY: @
THINK_TM_MIN: .1
THINK_TM_MAX: .5

THREADS_PER_SCHEMA

ADMIN_SQLNET_SERVIC
SQLNET_SERVICE_BASE
SQLNET_SERVICE_MAX: "

Connect strings to be used:
admin_connect_string: "/ as sysdba"
non_admin_connect_string: ""
admin_conn: "sqlplus -L / as sysdba"

NOTIFY : 2015.07.
NOTIFY : 2015.07.
NOTIFY : 2015.07.
NOTIFY : 2015.07.
NOTIFY : 2015.07.
NOTIFY : 2015.07.
NOTIFY : 2015.07.
NOTIFY : 2015.07.
NOTIFY : 2015.07.
NOTIFY : 2015.07.
NOTIFY : 2015.07.
NOTIFY : 2015.07.
NOTIFY : 2015.07.
NOTIFY : 2015.07.
NOTIFY : 2015.07.
NOTIFY : 2015.07.
NOTIFY : 2015.07.
NOTIFY : 2015.07.
NOTIFY : 2015.07.

: Testing SYSDBA connectivity to the instance to validate slob.conf settings.
: Testing connectivity. Command: "sqlplus -L / as sysdba"

: Testing connectivity. Command: "sqlplus -L userl/userl”

: Performing redo log switch.

: Redo log switch complete.

: Setting up trigger mechanism.

H host--in background.
:| Connecting 64 sessions to 1 schema(s)

: Executing AWR "before snap" procedure. Connect string is "sqlplus -S -L / as sysdba"

: Triggering the test.

: List of monitored sqlplus PIDs written to /tmp/.4977_slob_pids.out

: Waiting for 112 seconds before monitoring running processes (for exit).

: Entering process monitoring loop.

: Run time in seconds was: 120

: Executing AWR "after snap" procedure. Connect string is "sqlplus -S -L / as sysdba"

: Generating AWR reports. HTML reports will be compressed. Connect string is "sqlplus -L / as sysdba"
: Terminating background data collectors.

./runit.sh: line Killed (iostat -xm 3 > iostat.out 2>&1)
./runit.sh: line 1057: 21477 Killed (vmstat 3 > vmstat.out 2>&1)
./runit.sh: line 1057: 21478 Killed (mpstat -P ALL 3 > mpstat.out 2>&1)

NOTIFY : 2015.07.09-10:35:57 :
NOTIFY : 2015.07.09-10:35:57 : SLOB test is complete.

<

Figure 13: SLOB Single Schema Testing With slob.conf Thread Count Control.

Figure 14 shows an example of Multiple Schema SLOB. Here, again, the number of

SLOB threads is being controlled by the slob.conf settings.

19

S

$ sh ./runit.sh
NOTIFY : 15.07.09-10:39:56 : Debug info being sent to slob_debug.out
NOTIFY : 15.07.09-10:39:56 :

NOTIFY : 2015.07.09-10:39:56 : Conducting SLOB pre-test checks.

UPDATE_PCT: 20
RUN_TIME: 120
WORK_LOOP: ©

SCALE: 2G (262144 blocks)
WORK_UNIT: 16
REDO_STRESS: LITE
HOT_SCHEMA_FREQUENCY: ©
DO_HOTSPOT: FALSE
HOTSPOT_MB: 100
HOTSPOT_OFFSET_MB: 1024
HOTSPOT_FREQUENCY: 3
THINK_TM_FREQUENCY: @
THINK_TM_MIN: .1
THINK_TM_MAX: .5

THREADS,PERASCHEMA

ADMIN_SQLNET_SERVICE:
SQLNET_SERVICE_BASE
SQLNET_SERVICE_MAX: """

Connect strings to be used:
admin_connect_string: "/ as sysdba"
non_admin_connect_string: ""
admin_conn: "sqlplus -L / as sysdba"

NOTIFY : 9 : Testing SYSDBA connectivity to the instance to validate slob.conf settings.

NOTIFY : 9 : Testing connectivity. Command: "sqlplus -L / as sysdba"

NOTIFY : 9 : Testing connectivity. Command qlplus -L userl/userl”

NOTIFY : 9: : Testing connectivity. Command: "sqlplus -L userl6/useri6"

NOTIFY : 9 : Performing redo log switch.

NOTIFY : 0 : Redo log switch complete.

NOTIFY : : Setting up trigger mechanism.

NOTIFY : H i i host--in background.

NOTIFY : :| Connecting 64 sessions to 16 schema(s) ...

NOTIFY : B

NOTIFY : : Pausing for 2 seconds before triggering the test.

NOTIFY : : Executing AWR "before snap" procedure. Connect string is "sqlplus -S -L / as sysdba"
NOTIFY :

NOTIFY : : Triggering the test.

NOTIFY : : List of monitored sqlplus PIDs written to /tmp/.32749_slob_pids.out

NOTIFY : : Waiting for 112 seconds before monitoring running processes (for exit).

NOTIFY : : Entering process monitoring loop.

NOTIFY : : Run time in seconds was: 122

NOTIFY : : Executing AWR "after snap" procedure. Connect string is "sqlplus -S -L / as sysdba"
NOTIFY : : Generating AWR reports. HTML reports will be compressed. Connect string is "sqlplus -L / as sysdba"
NOTIFY : : Terminating background data collectors.

NOTIFY : :

NOTIFY : : SLOB test is complete.

P |

Figure 14: SLOB Multiple Schema Testing With slob.conf Thread Count Control.

Figure 15 shows an example of overriding slob.conf settings. As the image shows the

slob.conf setting for THREADS_PER_SCHEMA was 64. However, with the use of
runit.sh Multiple Option Invocation the slob.conf setting for SLOB threads is
overridden. As the image shows runit.sh connected 15 SLOB threads (Oracle

Database sessions) each to 13 SLOB schemas.

20

$ grep THREADS_|
THREADS_PER_SCH

NOTIFY :
NOTIFY :
NOTIFY :

PE slob.conf
=64

$
$ sh ./runit.sh|-s 13 -t 15

2015.07.09-10:44:42 :

Debug info being sent to slob_debug.out

2015.07.09-10:44:42 :

2015.07.09-10:44:42 :

UPDATE_PCT: 20
RUN_TIME: 120
WORK_LOOP: ©

SCALE: 2G (262144 blocks)
WORK_UNIT: 16
REDO_STRESS: LITE
HOT_SCHEMA_FREQUENCY: @
DO_HOTSPOT: FALSE
HOTSPOT_MB: 100
HOTSPOT_OFFSET_MB: 1024
HOTSPOT_FREQUENCY: 3
THINK_TM_FREQUENCY: @
THINK_TM_MIN: .1
THINK_TM_MAX: .5

Conducting SLOB pre-test checks.

THREADS_PER_SCHEMA: 15 (-t option)

NOTIFY :

NOTIFY :
NOTIFY :

NOTIFY :
NOTIFY :
NOTIFY :

ADMIN_SQLNET_SERVICE: ""
SQLNET_SERVICE_BASE: ""
SQLNET_SERVICE_MAX: "*

Connect strings to be used:
admin_connect_string: "/ as sysdba"
non_admin_connect_string: ""
admin_conn: “sqlplus -L / as sysdba"

2015.07.09-10:44:42 :

2015.07.09-10:44:51 :
2015.07.09-10:44:51 :

2015.07.09-10:47:10 :
2015.07.09-10:47:10 :
2015.07.09-10:47:11 :
./runit.sh: line 1057: 26966 Killed
./runit.sh: line 1@57: 26967
./runit.sh: line 1@57: 26968 Killed

Testing SYSDBA connectivity to the instance to validate slob.conf settings.

NOTIFY : 2015.07.09-10:44:42 : Testing connectivity. Command: "sqlplus -L / as sysdba"
NOTIFY : 2015.07.09-10:44:42 : Testing connectivity. Command: "sqlplus -L userl/userl"
NOTIFY : 2015.07.09-10:44:42 : Testing connectivity. Command: "sqlplus -L userl3/user13"
NOTIFY : 2015.07.09-10:44:42 : Performing redo log switch.

Redo log switch complete.
Setting up trigger mechanism.

NOTIFY : 2015.07.09-10:45:01 : nving-iostaty-vmstat-and-mpstat-on-current) host——in background.

NOTIFY : 2015.07.09-10:45:01 :’—?ohnnecting 15 sessions to 13 schema(s) ...

NOTIFY : 2015.07.09-10:45:06 :

NOTIFY : 2015.07.09-10:45:06 : Pausing for 2 seconds before triggering the test.

NOTIFY : 2015.07.09-10:45:08 : Executing AWR "before snap" procedure. Connect string is "sqlplus -S -L / as sysdba"
NOTIFY : 2015.07.09-10:45:09 :

NOTIFY : 2015.07.09-10:45:09 : Triggering the test.

NOTIFY : 2015.07.09-10:45:09 : List of monitored sqlplus PIDs written to /tmp/.19589_slob_pids.out
NOTIFY : 2015.07.09-10:45:14 : Waiting for 112 seconds before monitoring running processes (for exit).
NOTIFY : 2015.07.09-10:47:06 : Entering process monitoring loop.

NOTIFY : 2015.07.09-10:47:10 : Run time in seconds was: 121

Executing AWR "after snap" procedure. Connect string is "sqlplus =S -L / as sysdba"

Generating AWR reports. HTML reports will be compressed. Connect string is "sqlplus -L / as sysdba"
Terminating background data collectors.

(iostat -xm 3 > iostat.out 2>&1)

(vmstat 3 > vmstat.out 2>&1)

(mpstat -P ALL 3 > mpstat.out 2>&1)

Killed

NOTIFY : 2015.07.09-10:47:17 :
NOTIFY : 2015.07.09-10:47:17 : SLOB test is complete.
sl

Figure 15: SLOB Multiple Schema Testing with Command Line Thread Count Override.

OS-Level Performance Data

The runit.sh produces iostat.out, vimstat.out and mpstat.out along with AWR reports.
These commands are only executed on the host where runit.sh is executed so they
are of little value when testing a remote host via SQL*Net.

The SLOB test administrator can disable the collection of OS performance data by
setting and exporting NO_OS_PERF_DATA=TRUE before invoking the runit.sh script.

About The db_stats.out File

A file called db_stats.out is created during a SLOB run. The db_stats.out file is a pipe-
delimited file with one line per session during the execution of the workload. The
lines contain columns corresponding to the SLOB thread (Database schema)
number, the length of run in centiseconds, the CPU time consumed by the SLOB
session in centiseconds and a percent figure to show how CPU-intensive the session
was.

21

SLOB Tunable Parameters

UPDATE_PCT
The UPDATE_PCT parameter controls what percentage of SLOB operations that will
modify blocks of data (modify DML.)

Values between 51 and 99 are non-deterministic.

A value of zero is a 100% SQL SELECT workload. Please note, when testing SLOB
with a small SGA buffer pool there will be physical reads from the tablespace even
with UPDATE_PCT set to 100. Oracle Database cannot modify a block of data until it
is first read into the SGA buffer pool.

RUN_TIME
The RUN_TIME parameter controls the wall-clock duration of a SLOB test in
seconds. Set RUN_TIME to an integer value and the SLOB runit.sh script will

terminate the execution of the test accordingly. Note, RUN_TIME can be overridden
with WORK_LOOP.

If RUN_TIME is set then WORK _LOOP should be set to zero.

WORK_LOOP

The WORK_LOOP parameter is used to control SLOB test duration based on
iterations of the SLOB work loop. The SLOB work loop consists of selecting a
random set of blocks to which SLOB performs a SLOB operation (SELECT or
UPDATE SQL operation). When controlling a SLOB test with the WORK_LOOP
parameter testing is not complete until all SLOB threads (Database sessions) have
performed WORK_LOOP number of SLOB operations.

SCALE

The SCALE parameter controls both data loading and test execution behavior. In
other words both setup.sh and runit.sh use this parameter.

SCALE can be assigned simple integer values or integer values modified by M/G/T
(megabytes, gigabytes, terabytes) nomenclature. When assigned a simple integer
value SCALE is the number of database blocks that will be loaded by setup.sh. For
example, setting SCALE to 10000 will cause roughly 80 megabytes of data to be
loaded into each SLOB schema (10,000 SLOB rows and therefore 10,000 SLOB
blocks + slight index overhead). Alternatively, SCALE could be set to “80M” to
achieve roughly the same schema fill levels.

22

During test execution (runit.sh) SCALE is used to determine the active data set for
the test. For example, the test administrator could set SCALE to 1T during data
loading and then test SCALE with settings ranging from 128G to 1TB in 128G
increments to study the effect of an increasing active data set.

WORK_UNIT

During SLOB testing WORK_UNIT controls the scope of blocks being manipulated by
each SLOB operation. For example, if WORK_UNIT is set to 32 then each SQL SELECT
and UPDATE will scope and manipulate 32 random blocks of data in the tablespace.
When testing with high levels of UPDATE_PCT (e.g., 50%) one generally sets
WORK_UNIT small (e.g., 16) so as to not burden the UNDO functionality of Oracle
Database. On the contrary if stressing UNDO functionality is of interest then one
would set UPDATE_PCT and WORK_UNIT to large values such as 50 and 1024
respectively.

REDO_STRESS

Set this parameter to either HEAVY or any other non-null value. When set to HEAVY
SLOB will generate significant amounts of redo logging (e.g., hundreds of megabytes
per second on high performance platforms). Generally speaking, setting
REDO_STRESS to a value other than HEAVY will generate reasonable amounts of
redo. The default is LITE.

LOAD_PARALLEL_DEGREE

The LOAD_PARALLEL_DEGREE parameter serves two purposes depending on
whether the test administrator is loading SLOB Single or Multiple Schema. In both
Single and Multiple Schema models this parameter controls the number of Oracle
Database sessions concurrently inserting data into the “base schema.” The “base
schema” is in the SLOB user1 schema.

With Single Schema model there is only the “base schema” hence
LOAD_PARALLEL_DEGREE affects the total data loading time. On the contrary,
Multiple Schema model has potentially many schemas in addition to the “base
schema.” In this model LOAD_PARALLEL_DEGREE has a bit of a batching effect by
controlling how many schemas are being loaded in parallel—after the base table is
loaded in parallel. For example, if LOAD_PARALLEL_DEGREE is 16 then the base
schema will be loaded with 16 processes running in parallel. If the load operation
happens to be Multiple Schema model then, once the base schema is loaded, there
will be sets of 16 processes loading into 16 different schemas in parallel. If there are,
for example, 128 schemas to be loaded in Multiple Schema model then there will be
16 processes loading the base schema followed by the remaining 127 schemas
loaded with 7 sets of 16 and a final set of 15 (1 + (7*16) + 15 = 128).

23

THREADS_PER_SCHEMA

The THREADS_PER_SCHEMA parameter controls how many SLOB threads (Oracle
Database sessions) will be performing SLOB operations against each schema during
a performance test. The THREADS_PER_SCHEMA parameter can be overridden by
the -t option to the SLOB runit.sh script.

DO_HOTSPOT
The test administrator can enable SLOB Hot Spot testing by setting DO_HOTSPOT to
TRUE.

Setting DO_HOTSPOT to FALSE disables SLOB Hot Spot functionality.

HOTSPOT_MB
The HOTSPOT_MB parameter controls the size of each Hot Spot in megabytes
whether testing Single Schema or Multiple Schema model.

HOTSPOT_OFFSET_MB

The HOTSPOT_OFFSET_MB parameter controls the location (within the SLOB active
data set) of the SLOB Hot Spot in each schema being tested. The Hot Spot will be
located at the same offset in every schema being tested whether SLOB Single or
Multiple Schema model

HOTSPOT_FREQUENCY

Each SLOB thread (Oracle Database session) performs SLOB operations in a loop.
The HOTSPOT_FREQUENCY parameter controls the frequency at which each session
will target the SLOB Hot Spot with a SLOB operation. For example, setting
HOTSPOT_FREQUENCY to 7 means every 7t SLOB operation targets the SLOB Hot
Spot of each schema being tested during a performance test.

HOT_SCHEMA_FREQUENCY

The HOT_SCHEMA_FREQUENCY parameter controls the frequency at which each
session will target the SLOB Hot Schema (the Oracle Database userl schema) with a
SLOB operation. For example, setting HOT_SCHEMA_FREQUENCY to 3 means 33%
of all SLOB operations will target the Hot Schema.

Setting HOT_SCHEMA_FREQUENCY to zero disables SLOB Hot Schema functionality.

THINK_TM_FREQUENCY

The THINK_TIME_FREQUENCY parameter controls the frequency at which each
SLOB thread pauses between SLOB operations so as to simulate think time of a
human database user. SLOB think-time is implemented with the DBMS_LOCK.SLEEP
package. For example, if THINK_TIME_FREQUENCY is 2 then each SLOB thread will

24

pause after every other SLOB operation. The length of pause is a random value in
seconds between THINK TM_MIN and THINK_ TM_MAX.

Setting THINK_TM_FREQUENCY to zero disables think time functionality.

THINK_TM_MIN
When testing SLOB with think time (see THINK_TM_FREQUENCY) the
THINK_TM_MIN parameter establishes the low bound for the random sleep value

chosen by each SLOB thread, at each frequency interval, as per the value assigned to
THINK_TM_FREQUENCY.

The unit of time for THINK_TM_MIN is seconds and values to hundredths-precision
are supported.

THINK_TM_MAX
When testing SLOB with think time (see THINK_TM_FREQUENCY) the
THINK_TM_MAX parameter establishes the high bound for the random sleep value

chosen by each SLOB thread, at each frequency interval, as per the value assigned to
THINK_TM_FREQUENCY.

The unit of time for THINK_TM_MAX is seconds and values to hundredths-precision
are supported.

SQL*Net Related Parameters

ADMIN_SQLNET_SERVICE

If you want all SYSDBA connections to go through a specific TNS names service then
set this parameter accordingly. For example, you might care to have a SQL*Net
service called SLOBDBA. As such you would set:

ADMIN_SQLNET_SERVICE=SLOBDBA.

SQLNET_SERVICE_BASE
This parameter serves multiple purposes.

If SQLNET_SERVICE_BASE is set but SQLNET_SERVICE_MAX is NULL then
SQLNET_SERVICE_BASE will be used during execution of runit.sh to direct all SLOB
sessions to this service.

Round Robin SQL*Net Connections

If SQLNET_SERVICE_MAX is a non-zero integer then runit.sh will treat this value as
the highest integer value to append to SQLNET_SERVICE_BASE during a round-robin
connection test. In other words, if both of the parameters SQLNET_SERVICE_BASE

?5

and SQLNET_SERVICE_MAX are set then SQLNET_SERVICE_BASE becomes a base
name and integer values 1 through SQLNET_SERVICE_MAX will be appended in a
round-robin fashion. See SQLNET_SERVICE_MAX for more information.

SQLNET_SERVICE_MAX

If set to a non-zero integer SQLNET_SERVICE_MAX is the highest integer value
appended to SQLNET_SERVICE_BASE in a Real Application Clusters testing scenario.
For example, if SQLNET_SERVICE_MAX is 3 and SQLNET_SERVICE_BASE is set to
“SLOB” then runit.sh will round-robin the connections from the SLOB1 service to
SLOB2 then SLOB3 and back to SLOB1 once SQLNET_SERVICE_MAX has been
reached.

It's best to set this parameter to an equal divisor of the number of SLOB threads you
will test with.

SYSDBA_PASSWD

If ADMIN_SQLNET_SERVICE is set then the scripts (setup.sh and runit.sh) will need a
password to connect to the database instance via a SQL*Net service as SYSDBA. For
example, if ADMIN_SQLNET_SERVICE is set to “SLOB” and you’ve configured the
Oracle password file (via the orapwd utility) for SYSDBA to “change_on_install” then
the scripts will use the following connect string for sqlplus to connect as SYSDBA:

sys/change on install@slob as sysdba

The awr_info.sh Script

The awr_info.sh script (located in the SLOB/misc directory) post-processes the non-
RAC report called awr.txt. The awr_info.sh script produces pipe-delimited
performance data suitable for cut/paste into a spreadsheet.

To make the most of awr_info.sh it is best to rename the awr.txt file generated by the
runit.sh script to indicate the number of SLOB threads. For example, in Figure 16 an
example of awr_info.sh is shown. In the example case there were two executions of
runit.sh—one with the 64 SLOB threads and the other with 128 SLOB threads. The
awr.txt file was named with the session count appended to each.

$

$ sh ./misc/awr_info.sh awr.txt.64 awr.txt.128

FILE|SESSIONS |ELAPSED [DB CPU|DB Tm|EXECUTES | LIO|PREADS |READ_} Mas\mnss\wnnz MBS|REDO MBS |DFSR_ LAT\DPR LAT\DFPR LAT|DFPw u\'r|u=w LAT\TDP WAIT|

awr.txt.64]64|122]4.6|62.5|2793|190086 90166| 705.3|26232| 325|34.6] ejo| 59| 2935|db sequer 11095432 7018.6 0.63 91.3 User 1/0
awr.txt.128|128|122|11.8|125.8]3450|235104|115520| 903.7|40406| 412]43. 2| 9760]0| | s135|db file q ent L ead 14115025 13.8€ 0.98 89.7 User 1/0|
$

Figure 16: SLOB awr_info.sh Script Output Example.

26

Legend For The awr_info.sh Script Columns

FILE
The name of the file processed by awr_info.sh.

SESSIONS

The number of SLOB threads (Oracle Database sessions) used in the test that
produced the awr.txt file. The SLOB test administrator would rename awr.txt to
awr.txt.N where N is the number of SLOB threads.

This value (N) is the product of multiplying the arguments supplied to runit.sh (-s
and -t options). For example, if testing Single Schema Model, with 64 threads, the
arithmetic would be 1 * 64 = 64 (runit.sh -s 1 -t 64). In the case of Multiple Schema
Model with, say, 4 schemas and 16 threads per schema the arithmetic would be 4 *
16 = 64 (runit.sh -s 4 -t 16).

ELAPSED
Run time in seconds.

DB CPU
DB CPU per second

DB Tm
DB Time per second

EXECUTES
SQL executions per second.

LIO
Logical reads (buffer cache hits) per second

PREADS
Physical reads per second.

READ_MBS
Physical read throughput in megabytes per second.

PWRITES
Physical writes per second.

WRITE_MBS
Physical write throughput in megabytes per second.

REDO_MBS
Redo write throughput in megabytes per second.

DFSR_LAT
Latencies (service times) in microseconds for db file sequential read wait events.

27

DPR_LAT
Latencies (service times) in microseconds for direct path read wait events.

DFPR_LAT
Latencies (service times) in microseconds for db file parallel read wait events.

DFPW_LAT
Latencies (service times) in microseconds for db file parallel write background wait
events.

LFPW_LAT
Latencies (service times) in microseconds for log file parallel write background wait
events.

TOP WAIT
The top wait event in suffered during the test execution.

Advanced Topics
In the main SLOB directory you can find a subdirectory called advanced_topics such
as shown in Figure 17:

$

$ pud
/home/oracle/build/SLOB
$ ls

advanced_topics asr misc README,AIX simple,ora slob,conf slob,sql wait kit
$ cd advanced_topics

$1s -1

total 720

-ru-r--r--, 1 oracle dba 601 May
-ru-r--r--, 1 oracle dba 45230 May
-ru-r--r--, 1 oracle dba 33266 May
-ru-r--r--, 1 oracle dba 165382 May

21
21
2 13:59 as_rac.htal.gz
21
-ru-r--r--, 1 oracle dba 2588 May 2 1
21
21
21
21
21

3
3
3
3:58 awr,txt, 128
3:58 db_stats,out
-ru-r--r--, 1 oracle dba 98530 May 3:58 iostat,out
-ru-r--r--, 1 oracle dba 345167 May 3
-ru-r--r--, 1 oracle dba 487 May 3
-ru-r--r--, 1 oracle dba 4573 May 4
—r‘i-r‘--r‘--. 1 oracle dba 11393 May 3
$

158 mpstat,out

+48 slob,conf /
102 typescript

158 vmstat,out

Figure 17: SLOB Advanced Topics Directory Listing.

This directory has the output produced by a bona fide SLOB test using the slob.conf
also in this directory. Note: this content was produced prior to SLOB 2.3 so the
runit.sh output and slob.conf parameters differ from SLOB 2.3 accordingly. The
directory also directory the init.ora file and—most importantly—the screen capture
from the test execution in the file called typescript. | recommend examining the
contents of this directory once you’'ve worked out the basics.

78

Where To Get More Information
SLOB has gained a great deal of popularity. In addition to kevinclosson.net/slob you
can simply enter the search term “oracle slob” in your favorite search engine to

learn what others in the user community are sharing about their use and knowledge
of SLOB.

79

